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PREDICTING DROPOUT IN SPECIAL FORCES SELECTION



1 Introduction

Imagine being able to correctly predict those individuals who will graduate

from pilot training, Harvard medical school, or even NASA’s astronaut

program. This would have a large impact on the world as it would reduce

individuals being disappointed due to being rejected, and as it would reduce

the use of resources for organizations. Also, selecting the right people would

positively influence the organization to which people are selected. For exam<

ple, some organizations are willing to pay millions of dollars to hire the right

researcher, athlete, or CEO (e.g., Metz, 2018). However, such predictions are

remarkably difficult to make. A single highly improbable event is all that is

needed to significantly alter the outcome (Taleb, 2010). For example, a recruit

in the selection program of the special forces can be the best in their class, but

drop out due to a close relative getting sick or a wrong step in a rabbit hole.

With that in mind, is it still possible to predict who will drop out and who will

graduate? The field that investigates this question is called personnel selection.

1.1 Personnel Selection

The field of personnel selection is built on a long history of research in

psychology and statistics. One of the pioneers in this field was Francis

Galton in the 1880s, when he invented regression and correlation analysis,

and invented the term psychometrics (Gillham, 2001). He was interested

in measuring mental ability to select capable individuals, but his tests were

mostly limited to tests for mental imagery, sight, hearing, and bodily strength

and size (Gillham, 2001). A test that more closely resembles today’s personnel

selection was the Binet<Simon Intelligence scale in 1904, which was used to

select French students “capable of regular schooling”. This method of testing
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for intelligence was soon applied in military selection during the first world

war (Terman, 1918). Soon after, personality tests were also developed for

selection. The Woodworth Personal Data Sheet was used to screen recruits

for the US Army for shell shock (Woodworth, 1918). Subsequent personality

tests were based on factor analysis, a method designed to identify underlying

factors that account for the patterns in responses to a set of questions. For

example, 4000 affect terms from the English dictionary were reduced to the 16

personality factor questionnaire (Cattell et al., 1970). More recently, these 16

personality factors were reduced to the Big Five personality traits, which are

now considered the most important factors in personality (Costa & McCrae,

1992).

It is notably a recurring theme here that the military has been a source

of innovation. Alan Turing built one of the first computers for the British

military, and was one of the first to come up with the notion of Artificial Intel<

ligence (AI) in the late 1940s (Turing, 1950). Next, the US Defense Advanced

Research Projects Agency (DARPA) has funded the precursor to the internet

in the 1960s (Abbate, 2000). In the 1970s, they funded the precursor to GPS

(Parkinson & Gilbert, 1983) and computer chips (Miller, 2022)¹. In the 1980s

they funded the precursor for modern screens (Florida & Browdy, 1991) and

more AI research (Roland & Shiman, 2002). After a lack of progress for AI in

that decade, a new system called High Performance Computing (HPC) was

introduced in the 1990s for DARPA (Roland & Shiman, 2002).

¹Apart from many benefits that these and earlier mentioned inventions and inventors
have provided, it should be noted that they can also be directly linked to much human
suffering. For example, the first chips were used to improve the accuracy of bombs in the
Vietnam war, and the intelligence tests were closely linked to the eugenics movement (see,
for example, Miller, 2022 or Gillham, 2001 for more information).
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A reason why many innovations have come from the military could be that

they have large problems that need to be solved quickly (Housel, 2023). For

example, the launch of the Sputniks satellite in 1957 by the Soviet Union

led to fear in Western nations that they were falling behind in technology. In

response, DARPA and NASA were founded in 1958. Currently, one large

problem that needs to be solved quickly is selecting the right personnel. It is

unclear how to solve this, but one step in the right direction could be to gather

and analyze more data, which could lead to better predictions in personnel

selection. In order to do so, we needed to develop software to efficiently gather

psychological and physical measures of recruits.

1.2 Data Collection and Processing

Our data collection was carried out at and made possible by the Dutch Special

Forces (Korps Commandotroepen in Dutch). Special forces are elite military

units that are trained to perform unconventional, high<risk, and specialized

missions. However, dropout rates in special forces selection programs are

close to 80% (e.g., Gayton & Kehoe, 2015). The military was interested in

identifying factors that could predict dropouts and use that to improve the

selection process.

To do so, we collected data from recruits during the training and selection

program. During this 16<week program, recruits are trained towards becom<

ing a special forces operator and at the same time subjected to grueling

physical and psychological challenges. Since there is no clear distinction

between training and selection in the program, we will use the the terms

training and selection interchangeably throughout this thesis. To facilitate the

data collection, we developed a custom software system that allowed recruits

to complete questionnaires online. Each recruit was assigned a unique login,
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granting them access to the system and enabling them to complete the

questionnaires. The system was designed to streamline the data collection

process, allowing researchers to process and analyze pseudonimized data of

the recruits. In total, this data collection resulted in about 60 000 lines of data

in the period from 2019 to 2023 (this number includes missing data).

These amounts of data collection would quickly become unmanageable

without the use of software. This is not unique to our research. A big part

of most academic research is entirely dependent on software (McElreath,

2020a). The collection of more data also has an effect on the data processing.

Manually editing data is feasible for studies with a few dozen participants and

a few variables, but become impractical for hundreds of participants and a few

dozen variables. For the data processing in our research, the Julia program<

ming language (Bezanson et al., 2017) was mainly used. This had benefits, but

drawbacks as well. Benefits were that the language is expressive, which means

that it is easy to express complex ideas in a few lines of readable code. Julia

usually sticks closer to mathematical notation than other languages, which

makes it easier to translate mathematical ideas to code. Drawbacks were that

that the language is still quite new² meaning that a lot of functionality that

would have been available in other languages, such as R or Python, was not

(yet) available. This forced the fixing of bugs in core Julia packages or creating

new Julia packages, which both resulted in a great learning experience. For

example, when adding the standard deviation to a data science package, there

was a useful discussion which lead to a better implementation³.

²Julia was first released in 2012, whereas Python was first released in 1991 and R in 1995.
³Thanks to Anthony Blaom and Okon Samuel in

https://github.com/JuliaAI/MLJBase.jl/pull/766.
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1.3 Statistics and Machine Learning

We based our research on earlier studies with the similar measures in similar

settings, and theoretical knowledge from psychology about personality and

sport science. However, much discussion exists on the validity of the typi<

cally used statistical analyses. This was challenging for our studies, which

were quantitative and hence relied fully on these analyses. The core of the

argument in quantitative research is the use of statistics, so researchers who

question the validity of these statistics question the core of the research.

Some argue that it is best to stick to the well<known and well<established

statistical tests regardless of the criticisms. If we all agree on what tests to use,

then we can all use the same objective criteria to evaluate the results. This is

like finding an optimial solution in a simplified world, instead of finding a

good solution in a more realistic world (Simon, 1979). It is possible that the

well<known approaches are not necessarily the best approaches. There could

exist better approaches that would lead to more and better scientific insights.

One problem that was pointed out with a well<known approach is that

decisions for hypothesis testing should be weighed carefully. For example,

instead of sticking to the default p<value of 0.05, it is better to justify why the

value was chosen (Lakens et al., 2018). Other researchers propose to switch

to Bayesian analyses since it requires researchers to be more explicit about

their assumptions (McElreath, 2020b). Even inside this Bayesian<world, there

are two camps. One argues for the Bayes factors approach, that resembles

frequentists hypothesis testing (e.g., Stefan et al., 2019), while another argues

for visualizing the analysis and inspecting the plots (e.g., Tendeiro & Kiers,

2019, Gelman et al., 2021). This latter approach is the most computationally

expensive, but does allow for greater flexibility in model definitions and is
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arguably more intuitive since model assumptions are more explicit and model

interpretations more visual.

With all the these statistical options, it was often not clear which model

should be used for which study during our research. This is in line with the

“no free lunch” theorem (Wolpert & Macready, 1997). The theory states that

there is no single statistical model that is the best fit for all studies. This means

that we have to choose the best model for each study, but this is not easy since

we do not know which model is the best.

A solution becomes clear when considering the ancient Buddhist story of

the blind men and an elephant. In this story, several blind men each touch a

different part of an elephant to learn what it is. One feels the trunk and says

it is like a thick tree branch, another feels a leg and declares it is like a pillar,

another feels the tail and shouted it is like a rope, and so on. Seen separately,

each man will come to the wrong conclusions. Hence, the solution is to

combine the information from multiple blind men to get a better picture.

Or in other words, we should use multiple statistical models to get a better

picture of the data.

Although multiple models and variable associations do provide insights,

they were not sufficient in practice. Such variable associations belong to the

inference, or explanation, paradigm (Hofman et al., 2021). This paradigm is

what Galton and Fisher used a century ago. For example, analyzing which

variables are associated with the outcome via a t<test is about explaining the

data. However, we wanted to apply our research to the selection, but the asso<

ciations did not indicate how accurate our predictions would be. Moreover,

associations can be misleading and suffer from overfitting. Overfitting is when

a model fits the data too precisely, leading to poor predictions on new data.

This is like a student who has seen the exam questions beforehand and can
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answer them all, but fails when seeing new questions. There are mathematical

ways to estimate overfitting, like the Bayesian Information Criterion, but

these are hard to interpret and do not clearly indicate how well the model will

do in practice.

To get a better understanding, we turned to the field of data science and

machine learning. In this paradigm, known as the prediction or algorithmic

paradigm (e.g., Hastie et al., 2009), the focus is not on explaining the

model, but on predicting the outcome. In this paradigm, a model can even

completely lack interpretability, i.e., a black-box, as long as it predicts well. For

example, nobody can fully understand why neural networks, such as modern

Large Language Models (LLMs), or human brains, make certain predictions.

As long as the model is useful and safe, this lack of understanding is accepted

in certain contexts. There is some understanding about the effectiveness

required to work with such models or referees, though. For a referee, this is is

tested in the form of a long process of graduating through the various levels

of refereeing before being allowed to referee a World Cup final. For a machine

learning model, this performance is typically tested on old data that the model

has not seen before.

A common approach for this is cross-validation. Cross<validation works by

splitting the data into a training and test set. The model sees the data in the

training set and is asked to predict the data in the test set. Next, the predictions

on the test set are compared to the real answers and the model receives a score.

This procedure is very similar to how students are tested at universities. The

student can see training questions and is then tested and evaluated on a set of

test questions. However, a student may be unlucky on the choice of test set.

It may be that the chosen test questions are particularly difficult (or easy) and

one could thus say that the test has a bias. Since statistical models can easily be
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reset (forced to unlearn) and since we nowadays have fast computers, cross<

validation can reduce this bias. Instead of choosing one training and test set,

the technique works by splitting the data in multiple folds. For each fold, a

subset of the data is put in the training set and a different subset is put in the

test set. Then the model is evaluated in each fold and the scores from each fold

are combined into a general score. The aim of this general score is to estimate

how well the model (or student) will do in the future when seeing new data

(or questions).

Cross<validation provides a single number indicating model performance.

However, this number is not informative enough for the purpose of this the<

sis. For example, in the context of special forces selection, this number would

not tell us how many recruits could be selected without making a mistake.

Luckily, there is a way to get a clearer estimate, which was invented after the

second World War. During the war, radars sent out pulses and received echos.

Based on the echos, the British radar operators had to decide whether the echo

was a plane or a flock of birds (Neale, 1985). The stakes for these decisions

were high. Mistakes could lead to a plane getting through unnoticed or to

sending pilots to a flock of birds. After the war, researchers investigated how

to systematically evaluate such radar systems. Simply put, the radar systems

responded with a signal of a certain strength (a continuous signal) and this

had to be converted to a binary decision on whether it is a plane (a binary

signal). Given two similar radar systems or two similar radar configurations,

how could one decide which one was better? One way is to think about it

statistically via the false alarm and detection probabilities (Kaplan & McFall,

1951). Based on these false alarm and detection probabilities, a plot can be

created that shows the trade<off between the two. This was then called the
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Receiver Operating Characteristic (ROC) curve (Fox, 1953), see Figure 1.1

for an example.

Figure 1.1
An example ROC curve

Note. Image from Fox (1953). Axis labels omitted for clarity.

On this plot, the probability of a detection is plotted on the y<axis and the

probability of a false alarm is plotted on the x<axis. These probabilities can be

estimated by varying the threshold of the radar system. In essence, this is like

asking the question “If we respond only if the signal is above X, how many

detections and false alarms do we expect?” For example, setting the radar to be

very sensitive will lead to many detections, but also many false alarms. When

plotting one line for one radar, radar designers could decide how to configure

the radar for the best trade<off between detections and false alarms. When

plotting multiple lines for multiple systems, designers could decide which

radar system was the best. Nowadays, this last part is often done without

plotting because the Area Under the Curve (AUC) can be calculated. A

higher AUC means that the system is more accurate overall. Later, the ROC

curve was used not only for radar systems, but for many problems where a
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continuous signal is converted to a binary decision, like in this thesis where

continuous model outcomes are converted to binary prediction decisions.

These were some of the tools that we used in this thesis. The aim being to

investigate the data in a statistically sound way. With these tools, we aimed to

answer the question of who will make it through the commando training and

who will dropout.

1.4 Thesis Chapters

The core of this thesis is split into four parts. In Chapter 2, we focused

on identifying personality traits that could differentiate between experienced

commandos and ordinary Dutch men, and between successful graduates

and dropouts in special forces training. We used the inference paradigm to

compare the personality traits of these groups, providing insights into the role

of personality in special forces selection.
Chapter 3 marks our transition from the inference to the inference and

prediction paradigm. The chapter introduces SIRUS.jl, our implementation

of the Stable and Interpretable RUle Sets (SIRUS) algorithm in Julia. SIRUS

aims to combine the benefits of decision trees and random forests, offering

high interpretability and stability. This chapter details the implementation,

interpretability, stability, and performance of SIRUS.jl. We compare its pre<

dictive performance to similar models on various small real<world datasets.

In Chapter 4, we used various machine learning techniques, including

SIRUS, to predict dropout in special forces selection programs using both

physical and psychological data, such as 2800 meters running time and

personality traits. This data was collected at one point in time during the

first week of the selection program. We again compared the performance,

explainability, and stability and showed the benefits of the SIRUS model in
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this high<stakes context due to it having good predictive performance while

retaining model stability and explainability.

In Chapter 5, we measured psychological and physical stress and recovery

states of recruits during the training program. This aimed to find early indi<

cators of dropout. Again, using machine learning techniques, we compared

the performance, explainability, and stability of the models. We also estimated

the real<world predictive performance of the most suitable model.

Then a final note on why this thesis contains some quotes and ideas

from investors such as Warren Buffett, Charlie Munger, Nassim Nicholas

Taleb, and Peter Lynch. It might sound like their occupation is unrelated

to personnel selection. However, this is not true. All these individuals have

excelled in making predictions, and often have an independently verified

track record to prove it. For example, Buffett’s success is based on selecting

which companies will do well in the future. Just like personnel selection, this

is a difficult task. Both personnel selection and company selection are about

predicting those that will operate successfully in a complex environment. Just

like in personnel selection, companies are also fragile: a single negative event

can lead to a permanent bankruptcy. The accuracy of his selection decisions

can be inspected by looking at the value of his public company Berkshire

Hathaway. If you would have bought one share valued at $19 in Berkshire in

1965, then this would today be worth more than half a million (Class A shares

are worth $615,591 at the time of writing). It is not possible for him to have

faked these predictions. During all these decades, his financial statements have

been verified by auditors, the tax authorities, and the Securities and Exchange

Commission. This is why Buffett is known as the “Oracle of Omaha”, and

why ideas from investors seem relevant to personnel selection.
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CHAPTER 2

Personality Traits of Special Forces Operators:
Comparing Commandos, Candidates and Controls

This chapter is based on:

Huijzer, R., Jeronimus, B. F., Reehoorn, A., Blaauw, F. J., Baatenburg de Jong, M., De Jonge, P., &

Den Hartigh, R. J. R. (2022). Personality Traits of Special Forces Operators: Comparing

Commandos, Candidates, and Controls. Sport, Exercise, And Performance Psychology, 11(3), 369–

370. https://doi.org/10.1037/spy0000296

Abstract

Dutch special forces operators, also known as commandos, perform in mentally

and physically tough environments. An important question for recruitment and

selection of commandos is whether they have particular personality traits. To

answer this question, we first examined differences in personality traits between

110 experienced Dutch male commandos and a control sample of 275 men in

the same age range. Second, we measured the personality traits at the start of the

special forces selection program, and compared the scores of candidates who later

graduated (n = 53) or dropped out (n = 138). Multilevel Bayesian models and t<

tests revealed that commandos were less neurotic (d = −0.58), more conscientious

(d = 0.45), and markedly less open to experiences (d = −1.13) than the matched

civilian group. Furthermore, there was a tendency for graduates to be less neurotic

(d = −0.27) and more conscientious (d = 0.24) than dropouts. For selection,

personality traits do not appear discriminative enough for graduation success

and other factors need to be accounted for as well, such as other psychological

constructs and physical performance. On the other hand, these results provide

interesting clues for using personality traits to recruit candidates for the special

forces program.
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2.1 Introduction

Dutch special forces operators, also known as commandos, perform in tough

high stakes contexts that require specific physical, mental and emotional

characteristics (Brailey, 2005). Commandos must remain focused and calm in

combat situations despite overwhelming intense smells, sounds and images,

and depend with their lives on their team’s functioning. Furthermore, they

work under conditions of extreme threat, isolation and complexity, and often

need to interact with other cultures in politically sensitive situations (Picano

et al., 2002). The individual characteristics needed to operate in such situa<

tions are typically operationalized in terms of personality dimensions; what

we feel, think, need, want and do. Our research aim was to identify whether

there are personality traits that are characteristic for commandos (Banks,

2006; Ones et al., 2007).

Personality of Commandos

In contemporary psychology, the highest level of the personality hierarchy is

summarized in terms of five broad trait dimensions (the Big Five): neuroti<

cism, extraversion, openness to experience, agreeableness and conscientious<

ness (John et al., 2010, see also Table 2.1). Since the second world war, the

United States of America (U.S.) selects commandos on their emotional and

interpersonal traits (emotional stability, social relations and security), intelli<

gence processing (effective IQ, observing and reporting) and agency/surgency

(motivation for assignment, energy and initiative leadership, physical ability;

see Banks (2006); Picano et al. (2002). This procedure suggests that emotional

stability (low neuroticism) and extraversion (activity and sociability) are key

personality competencies for success in high<risk operational personnel, next

to cognitive abilities. However, so far, few studies examined the personality
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traits of commandos and quantified how they actually compare to civilian

samples.

Table 2.1
Definition of Personality Based on the Big Five

Big Five Domain High scoring individuals tend to be …

Neuroticism emotionally unstable, anxious, self<conscious,

vulnerable, and experiencing negative affect.

Extraversion sociable, assertive, energetic, excitement seeking, risk<

taking, and experiencing positive affect.

Openness perceptive, creative, reflective, flexible, curious, and

appreciative of fantasy, aesthetics, and novelty.

Agreeableness kind, cooperative, altruistic, trustworthy, trusting,

generous, and empathic.

Conscientiousness ordered, dutiful (norms/rules), self<disciplined,

reliable, persistent, and achievement oriented.

In one of the previous studies, personality trait scores among 139 U.S. Navy

Sea<Air<Land (SEAL) operators were compared to scores of U.S. civilians

(Braun et al., 1994). In line with the above mentioned key personality compe<

tencies, SEALs reported lower average neuroticism and agreeableness scores

than civilians, but higher conscientiousness and extraversion. Additionally,

more experienced SEALs reported higher conscientiousness. Although

research on the personality traits of commandos is scarce, several studies

examined Big Five measures of other military personnel and police officers

who work in high stakes contexts. For instance, a sample of 57 Swedish coun<

terterrorism intervention unit police officers showed lower mean neuroticism
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scores (Cohen’s d = 0.70) and more extraversion (d = 0.70) and conscientious<

ness (d = 0.40) than the general Swedish population (Tedeholm et al., 2021).

Furthermore, a comparison of 268 French military candidates with 447

students indicated that candidates reported lower openness (d = 2.04) than

the students (Rolland et al., 1998). Similarly, people who entered the German

military were marked by lower openness (d = 0.15 with a propensity<score

model) than people who did not enter the military (Jackson et al., 2012). The

large differences between the studies in terms of effect sizes could arise from

differences in sampling or methodology. For example, Jackson et al. (2012)

used propensity score matching which may have increased bias and imbalance

(King & Nielsen, 2019).

In Figure 2.1, we visually summarized previous studies of personality traits

of workers in high stakes contexts, such as special forces units (Fountoulakis

et al., 2014; Jackson et al., 2012; Rolland et al., 1998; Sørlie et al., 2020;

Tedeholm et al., 2021). This shows that high stakes context workers score

relatively high on conscientiousness and low on neuroticism compared to

control groups. Differences in the other personality traits were less consistent.

This could indicate that there is not strictly one personality trait that allows

people to be proficient in high stakes contexts. However, little is known about

how commandos and civilian men with a similar age and background actually

differ in their personality traits. Therefore, our first research question was:

how do the personality traits of experienced commandos differ from those of

a matched sample of civilians in the general population?

16
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Figure 2.1
An Informal Review of Personality Traits of Workers in High Stakes Contexts

Compared to Civilians

Note. The means and standard errors (SEs) for personality scores obtained in previous research. The lower four
studies focused on high stakes military contexts and the upper four on civilian populations (control groups). The
means and SEs are similar to independent samples t<tests. Scores were transformed to the range [1, 5], resulting in
a total score in the range [48, 240]. For example, studies scored in the range [0,4] have lower bound 𝑙 = 0 and
upper bound 𝑢 = 196. Any mean 𝑚 in the range [𝑙, 𝑢] was transformed to a mean 𝑚′ in the range [48, 240] via
𝑚′ = 48 + 𝑚−𝑙

𝑢−𝑙 · (240 − 48). Similarly, any standard deviation 𝑠 was transformed to 𝑠′ via 𝑠′ = 𝑠
𝑢−𝑙 · (240 −

48). The ranges for Fountoulakis et al. (2014), Jackson et al. (2012), Sørlie et al. (2020), and Tedeholm et al.
(2021) were respectively [0, 192], [0, 4], [0, 192] and [0, 192], and obtained by author correspondence.
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Assessment and Measures

Next to the question of how commandos differ from civilians, we examined

whether personality traits of candidates, who successfully completed the

selection program, differed from those who dropped out. Personality assess<

ments are often part of the special forces selection procedure (e.g., Hartmann

et al., 2003; Saxon et al., 2020), but relatively little scientific research has

been conducted on this topic. Specifically focusing on the Big Five domains,

a study by McDonald et al. (1990) shows that U.S. graduates scored lower

on neuroticism than the dropouts. Another U.S. study on reconnaissance

marines found that higher extraversion was associated with graduation (Saxon

et al., 2020). Other studies focused on the Big Five personality traits on

the facet level, which are more narrow personality dimensions. For example,

Picano et al. (2002) studied elite military personnel screened for a non<routine

military assignment and identified two facet traits that predicted success;

“activity” in the extraversion domain (E4, being lively) and “straightforward<

ness” in the agreeable domain (A2; having high morale). Training completion

in the Norwegian naval special forces was not associated with any of the Big

Five domains or facets (Hartmann et al., 2003; Hartmann & Gr⊘nner⊘d,

2009), in discord with the findings by McDonald et al. (1990), Picano et al.

(2002), and Saxon et al. (2020).

When looking at less extreme contexts, a lower neuroticism score and a

higher agreeableness score were found to be related to graduation in the

Canadian forces basic training (Lee et al., 2011). In the Netherlands, a large

study of multiple datasets showed that successful military candidates were

more likely to score high on extraversion, conscientiousness, agreeableness

and openness, and low on neuroticism (Van der Linden et al., 2010). A

meta<analysis on military aviators showed that lower neuroticism and higher
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extraversion scores were related to training success (Campbell et al., 2010).

Despite the frequent measurement of personality in special forces training

programs, the degree to which the outcomes can be used for selection in such

programs remains unclear. Overall, most research suggests that successful

commando candidates were less likely to be neurotic and more likely to be

extraverted and agreeable (e.g., Jackson et al., 2012), but not all commando

studies supported these differences (e.g., Hartmann & Gr⊘nner⊘d, 2009).

Therefore, the present study examines whether and which personality differ<

ences predict success during the commando selection procedure in the

Netherlands. More specifically, we examined whether graduates and dropouts

of the special forces selection program could be distinguished based on their

measured personality traits.

The Current Study

The purpose of the current study was to examine whether measured person<

ality traits differ between (1) commandos and civilians and (2) graduates

and dropouts. We therefore examined the personality of a sample of Dutch

male commandos, a matched control group from the Dutch population, and

candidates in the special forces selection program. Our first hypothesis was

that commandos reported lower neuroticism, higher conscientiousness and

more extraversion than civilians (see Braun et al., 1994; Rolland et al., 1998;

Tedeholm et al., 2021). No differences in agreeableness and openness were

expected. Our second hypothesis was that graduates report lower neuroticism

than dropouts (Campbell et al., 2010; Lee et al., 2011; McDonald et al., 1990)

and more extraversion and agreeableness (Campbell et al., 2010; Hartmann et

al., 2003; Lee et al., 2011; Picano et al., 2002; Saxon et al., 2020). No specific

expectations were set for openness to experience and conscientiousness.

19



PREDICTING DROPOUT IN SPECIAL FORCES SELECTION

2.2 Method

Participants

Data from the, exclusively male, commandos and candidates were obtained

via the Commando Corps of the Royal Netherlands Army. Commandos

were approached by email, including an information letter about the study.

We received active consent from 110 experienced commandos, that is,

commandos who successfully finished the entire special forces training. The

matched controls were derived from a large Dutch crowd<sourced dataset

(Van der Krieke et al., 2016) from which 275 males aged 18 to 35 were

selected (Mage = 27.7, SDage = 4.62). New candidates were invited to partic<

ipate in this study during their pre<selection training. Both candidates and

instructors were informed that participation was completely voluntary and

that their participation and results would not be used for selection purposes.

All candidates actively consented to participate in the study and the procedure

was approved by the institutional review board with code PSY<1920<S<0512.

Of the 223 candidates who started the selection period, 53 graduated (Mage

= 25.2, SDage = 2.70) and 138 dropped out for non<medical reasons (Mage =

25.9, SDage = 2.96). We excluded 32 participants who dropped out for medical

reasons. The selection is based on a combination of objective and subjective

measures. Candidates can drop out for non<medical reasons if they do not

meet the physical requirements at any point during the selection, if they are

caught in an offense such as stealing, or if the instructors unanimously agree

that a person is unfit to become an operator. Furthermore, the sample sizes

were limited by the number of participating operators and the number of

candidates who started the selection in the period in which we collaborated
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with the army. Given the sensitivity of the samples that we studied, more

detailed descriptions were not provided.

Procedure

For both the commandos and candidates, participation occurred via our Your

Special Forces platform (https://yourspecialforces.nl), which was specifically

built for the purpose of the research project. The commandos received

instructions and credentials via email, and were invited to participate in the

questionnaire during their work hours. For the candidates, data collection

took place at the training camp. In the first week of the selection, participants

completed the assessments using tablets in a large room which was set up

like a traditional classroom. Once participants entered the room, they were

informed about the consent procedure, study goal, and that participation

would not affect their graduation chances. We provided the participants

with a pseudo<anonymous username. After logging in with their usernames,

the participants accessed multiple questionnaires including the personality

questionnaire, and received as much time as they needed to fill it in. Most

participants finished within one hour. The matched sample of Dutch civil<

ians completed their questionnaires online via the HowNutsAreTheDutch

platform at their own time and convenience (see Van der Krieke et al., 2016

for details). Both the commandos and civilians could use a digital device of

their own choosing.

Measures

The commandos and candidates completed the Dutch version of the NEO<

PI<3 (Hoekstra & De Fruyt, 2014) which captures the big five personality

domains with 240 items, each rated on a 5<point Likert scale ranging from

1 (strongly disagree) to 5 (strongly agree). The questionnaire contains 48
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items per domain and this is further split into 8 items per facet (6 facets per

domain). The NEO<PI<3 was chosen due to its high reliability and validity

and its prevalence in military personality research. The validity of the English

version has been shown in multiple settings (e.g., Costa et al., 2008, De Fruyt

et al., 2009, Egger et al., 2003). Furthermore, the reliability and validity of

this instrument are thoroughly assessed by the Dutch Committee on Tests

and Testing (COTAN), across different norm groups (including 594 male

civilians and 339 civilians between 23 and 35 years of age, see Hoekstra & De

Fruyt, 2014 for details). As an additional check of the validity in our sample,

we conducted an Exploratory Structural Equation Modeling (ESEM) analy<

sis, which combines the exploratory and confirmatory factor analyses (Marsh

et al., 2014). The ESEM model is accepted with a reasonable fit (p < 0.05, CFI

= 0.89, TLI = 0.83, RMSEA = 0.07) (Marsh et al., 2014, p. 785; see Table S2 in

the supplemental material of Huijzer et al., 2022 for more information). The

internal reliability of the scale was good, with a McDonald’s omega coefficient

of 0.87 and a 95% bootstrapped confidence interval ranging from 0.80 to 0.93

as calculated via the psych package (Revelle & Revelle, 2015). The Dutch

civilians completed the shortened NEO<FFI (60<items) which was derived

from the more comprehensive NEO<PI<3 (Van der Krieke et al., 2016).

Analyses

To examine whether commandos differed in their personality traits from

matched civilians (hypothesis 1) and whether graduates differed from

dropouts (hypothesis 2), we fitted a multilevel Bayesian model and t<tests.

Latent profile analyses (LPA) were considered as well, upon request by our

reviewer, but appeared less suited given the sample size. The results, which

were added to Table S3 of Huijzer et al. (2022a). For LPA, one of the best
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information criteria is the Bayesian information criterion (BIC) according to

Nylund et al. (2007). In accordance with the results reported, the BIC metric

indicated that the 2<profile model (graduates vs. dropouts or commandos vs.

controls) is suitable for our data.

With 2 groups and 5 personality domains per research question, we per<

formed Bayesian analyses to avoid the multiple comparison problem, which

leads to overestimation of effect sizes or estimating them to be in the wrong

direction (Gelman, 2018). We interpreted the posterior model probabilities

directly (McElreath, 2020b; Tendeiro & Kiers, 2019). Bayesian techniques

also allow us to conclude that there is no effect, which is an additional benefit

over classical hypothesis testing (Gelman et al., 2012). We used a multilevel

model with partial pooling which is a regularization technique that allows

the model to combine information from different groups, and reduces the

chances of detecting false<positive results (McElreath, 2020b). In our study,

the Bayesian approach estimates the population parameters directly which, in

our case, are the population means.
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We defined and fitted the models using the Julia programming language

(Bezanson et al., 2017) with the Bayesian inference package Turing.jl (Ge et

al., 2018). The model is defined as
𝛼 ∼ Normal(144, 15)
𝜎 ∼ Cauchy(0, 2)

𝛼group[𝑖] ∼ Normal(𝛼, 𝜎)
𝜇𝑖 = 𝛼group[𝑖]

𝑆𝑖 ∼ Normal(𝜇𝑖, 𝜎),

where 𝑆𝑖 denotes the personality score for participant 𝑖. Here, we set the prior

for 𝛼 to 144, which is in the middle of the lower and upper bound of the

scoring range. More specifically, the number is obtained via (240 < 48) / 2 +

48 = 144. This model assumes that all groups should look similar.

Arguably, this common mean 𝛼 (partial pooling) will favor solutions

where differences between groups are minimized. Hence, as a validity check

of our Bayesian analysis, we fitted t<tests. The benefit of the t<tests is that they

can be compared to existing literature more easily and are more familiar to

many readers. In this study, we considered the Bayesian results as leading and,

therefore, used the t<tests as a backup. Note that both our Bayesian model and

the t<test compare the means of different groups. Also note that the Bayesian

model is expected to be more conservative due to the partial pooling.

For the t<tests, the statistical power is as follows. For hypothesis 1, the most

suitable source for estimating the expected effect size compares counterter<

rorism police officers to civilians. The Cohen’s d scores on the neuroticism,

extraversion, openness, agreeableness, and conscientiousness (NEOAC) di<

mensions were −0.7, 0.7, 0, 0.2 and 0.4, respectively (Tedeholm et al., 2021).

Based on this, we expect an effect size of around 0.5 which gives a power of

d ≈ 0.96 (Champely et al., 2017). For hypothesis 2, we can leverage a related
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meta<analysis for an estimate of the effect size: the true validity for neuroticism

and extraversion in a meta<analysis on military aviation training success is

estimated to be r = −0.25 and r = 0.17 respectively (Campbell et al., 2010).

In terms of Cohen’s d, this is d ≈ −0.52 and d ≈ 0.34 respectively (Hunter &

Schmidt, 2004, Eq. 7.11). Given such a medium Cohen’s d effect size of 0.4,

the power for the comparison of graduates and dropouts (hypothesis 2) is d

≈ 0.69.

We report Bayesian distribution estimates and credible intervals that show

probabilistic uncertainty in the parameter value. This differs from the Fre<

quentist confidence interval and the uncertainty about whether it contains

the true value. Also, we provided standardized group differences by means of

Cohen’s d and interpreted effect sizes as very small to small (below 0.20), small

to medium (0.20 to 0.50), medium to large (0.50 to 0.80), or large to very

large (0.80 and higher) (Sawilowsky, 2009). As a reference, the average Pearson

correlation coefficient between personality and important life outcomes is r

= 0.22 (95% CI = [0.18, 0.29], Richard et al., 2003; Soto, 2019) up to r = 0.30

with other (non<test) behaviors (Caspi & Shiner, 2006; Saucier & Goldberg,

1998), thus, small to moderate effects. The code to reproduce the results has

been made available at the Open Science Framework and can be accessed at

https://osf.io/ysfu6.

2.3 Results

Since Bayesian samplers start at a random point, the results can vary when

doing multiple runs, that is, run multiple chains. Following common practice

(McElreath, 2020b), three chains were run and their results were consistent.

We also checked stationarity and good mixing by visually inspecting graphs of

the posterior samples. In Figure 2.2 and 2.3, the posterior distributions show
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the aggregated results from the chains. The results for the t<tests are described

in the text below; together with the results for the first and second hypotheses.

The descriptives are shown in Table 2.2.

Table 2.2
Descriptive Statistics for Commandos, Graduates, Dropouts and Civilians

Commandos Civilians Graduates Dropouts

Number of participants 110 275 53 138

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Neuroticism 111.9 (16.7) 130.9 (37.2) 110.3 (15.5) 114.6 (15.4)

Extraversion 161.6 (12.8) 157.4 (33.1) 164.3 (13.2) 161.9 (14.9)

Openness 148.2 (14.9) 174.1 (25.2) 148.9 (13.2) 149.2 (13.9)

Agreeableness 164.2 (13.4) 160.1 (24.1) 172.5 (13.9) 171.4 (14.4)

Conscientiousness 178.3 (15.6) 166.4 (29.3) 183.9 (14.5) 180.5 (13.6)

Note. SD = Standard Deviation. Civilians refers to a male sample from the general Dutch population matched to
the commandos on age and education.

Hypothesis 1 - Commandos versus Controls

First, we examined whether commandos differed in their Big Five personality

traits from civilians. We fitted Bayesian models (Figure 2.2) and performed

t<tests (described in the text). In line with hypothesis 1, these models demon<

strate that commandos score lower than civilians on neuroticism (𝑡(383) =

−5.15, p < 0.001, d = −0.58) with a medium to large effect size and higher on

conscientiousness (𝑡(383) = 4.01, p < 0.001, d = 0.45) with a small to medium

effect size. Commandos also score lower on openness than civilians (𝑡(383) =

−10.1, p < 0.001, d = −1.13) with a large to very large effect size. There were no

clear differences between the groups for extraversion (𝑡(383) = 1.30, p = 0.19,
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d = 0.15) and agreeableness (𝑡(383) = 1.69, p = 0.09, d = 0.19) with both a very

small to small effect size.

Figure 2.2
Comparison of Civilians with Commandos on the Big Five Personality Domains

Pe rs ona lity s core

civilia ns
comma ndos

Group

Note. Neuroticism (N), extraversion (E), openness (O), agreeableness (A) and conscientiousness (C). The small
vertical bars in the posterior distributions show the 95% credible interval.

Hypothesis 2 - Graduates versus Dropouts

To examine whether commando graduates differed in their Big Five person<

ality traits from dropouts, we again fitted a Bayesian model (Figure 2.3) and

performed t<tests (described in the text). In contrast with hypothesis 2, none

of the results were significant. Yet, the clearest effect size differences are visible

for neuroticism and conscientiousness, where graduates score lower than

dropouts on neuroticism (𝑡(189) = −1.71, p = 0.09, d = −0.27) with a small
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to medium effect size. For conscientiousness, graduates score higher (𝑡(189) =

1.51, p = 0.13, d = 0.24) with a small to medium effect size. Smaller effect sizes

were visible for the other domains, namely openness (𝑡(189) = −0.14, p = 0.89,

d = 0.02) with a very small to small effect size, extraversion (𝑡(189) = 1.04, p =

0.30, d = 0.17) with a very small to small effect size and agreeableness (𝑡(189)
= 0.49, p = 0.63, d = 0.08) with a very small to small effect size.

Figure 2.3
Comparison of Graduates with Dropouts on the Big Five Personality Domains

Pe rs ona lity s core

dropouts
g ra dua te s

Group

Note. Neuroticism (N), extraversion (E), openness (O), agreeableness (A) and conscientiousness (C). The small
vertical bars in the posterior distributions show the 95% credible interval.

To derive a more nuanced insight into commando personalities we subse<

quently examined differences between commandos and matched controls

in 30 more specific facet traits, generally thought to be informative when
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predicting consequential outcomes (Stewart et al., 2022). We refrain from

an interpretation of the facet differences between commandos and civilians

because none was significant in our models (all d below 0.30 and p above

0.07), see Table S1 in the supplemental material of Huijzer et al. (2022a) for

details. Finally, we explored whether graduates and dropouts differed in more

specific facet traits, no significant differences were detected (see Table S1 of

Huijzer et al., 2022 for details).

2.4 Discussion

This study was aimed to investigate (1) personality differences between experi<

enced commandos and civilian controls and (2) whether and how personality

traits distinguished graduates from dropouts during the selection period. To

investigate the hypotheses, a large<scale study was conducted in collaboration

with the Royal Netherlands Army. Our key observation was, first, that the

group of commandos was less neurotic, more conscientious, and markedly

less open to experience than civilians matched on age and education. Second,

successful candidates tend to report lower neuroticism and higher conscien<

tiousness. The other personality traits showed inconsistent results, and more

nuanced facet traits did not differ between graduates and dropouts.

Hypothesis 1 - Commandos versus Controls

In line with our first hypothesis, the commandos scored lower on neuroticism

and higher on conscientiousness compared to matched civilian controls. This

pattern is in accordance with studies of more experienced U.S. Navy SEALs

(Braun et al., 1994) and Swedish counterterrorism intervention police officers

versus Swedish civilians (Tedeholm et al., 2021). For extraversion, we found

no evidence to support, nor to reject, the idea that operators are more
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extraverted than civilians. Although the direction of the effect that we found

is in accordance with previous research, Braun et al. (1994) and Tedeholm et

al. (2021) found clearer evidence that U.S. Navy SEALs score higher on extra<

version than less experienced SEALs, and that counterterrorism intervention

police officers score higher on extraversion than civilians, respectively. For

agreeableness, we had no specific expectations, and also found no meaningful

differences between commandos and controls.

Our analysis provided strong evidence for a marked difference in openness

to experience between commandos and matched controls, a novel contribu<

tion to the literature on personnel selection and military psychology. This

result suggests that, compared to civilians, commandos prefer routines,

consistency, traditions, and familiarity, and approach new things with great

caution and are less likely to be overwhelmed by emotions (Larsen et al.,

2020). Openness also differed between French military candidates and general

students (Rolland et al., 1998), and between German students who decided

to join the military or not (Jackson et al., 2012). Contrarily, a comparison

of counter<terrorism intervention unit police officers and civilians showed

trivial differences in openness (Tedeholm et al., 2021). Compared to previous

research, it seems that the civilians in our sample scored higher on openness

than the control groups and the commandos score lower than the military

groups (to see this, compare Figure 3 and Figure 4). This may be due to the

nature of our matched control group, which comprised relatively young men

who voluntarily participated in an online questionnaire (Marcus & Schütz,

2005). Finally, our results are partly in line with the study of multiple military

datasets by Van der Linden et al. (2010) who concluded that successful

military candidates in general were more likely to score low on neuroticism,

and high on extraversion, conscientiousness, agreeableness, and openness.
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Hypothesis 2 - Graduates versus Dropouts

For the comparison between graduates and dropouts, the results were less

evident. This is likely to be caused by the homogeneity of the group in

combination with the limited statistical power. Interestingly, as with the com<

parison between commandos and controls, the clearest patterns were found in

neuroticism and conscientiousness. For neuroticism, our results suggest that

graduates score lower on neuroticism than dropouts, which in the hypothe<

sized direction. This result is also in line with the study by McDonald et al.

(1990) on U.S. Navy SEAL candidates, which showed that graduates were less

neurotic than those who did not graduate. Similarly, in a study on Canadian

Forces basic training, it was found that lower neuroticism was associated with

training success (Lee et al., 2011). Furthermore, a meta<analysis concluded

that lower neuroticism predicted military aviation training success (Campbell

et al., 2010). People with lower neuroticism scores tend to experience lower

subjective threat, impulsivity, vulnerability to stress, and anxiety, which may

be important characteristics to become a commando.

For conscientiousness, the result was in the hypothesized direction, but

was not significant. A stronger pattern was found in a study on Navy SEALs

who found that more experienced SEALs score higher on conscientiousness

(Braun et al., 1994). We also found that graduates scored on average half a

standard deviation higher on extraversion than dropouts. A clearer difference

has previously been reported in a meta<analysis on military aviators (Camp<

bell et al., 2010), a study with Navy SEALs (Hartmann et al., 2003) and a

study with reconnaissance marines (Saxon et al., 2020). A likely explanation

for these results is that extraverted people are more prone to seek excitement,

be active, and take risks, all of which are important qualities for commandos

(Keinan et al., 1984; Stewart, 2017).
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Contrary to our hypothesis and previous research we did not find that

graduates score higher on agreeableness (Campbell et al., 2010; Hartmann

et al., 2003; Saxon et al., 2020). A possible explanation for the difference

between previous findings and our outcomes is the lower power of our study

or that the trait agreeableness contains facets that can be positive as well

as negative for a commando. For example, having high trust and straightfor<

wardness is important for effective teamwork (Jones & George, 1998), but

being modest might not contribute to a successful mission. This observation

is in line with studies of leadership that indicate that leaders tend to be

extraverted and low on neuroticism, but results for agreeableness tend to be

fuzzy, which suggests that a broader range of scores can be proficient strategies

(Do & Minbashian, 2020; Judge et al., 2002). Finally, we did not have a

hypothesis for openness to experience, and our results did not reveal a strong

enough difference between the graduates and dropouts to conclude that they

differ in this trait.

Limitations and Future Directions

In our study, we used the NEO<PI<3 with 240 items for the candidates and

commandos, and the NEO<FFI for the civilians. This difference appeared

to result in different variances in scores on personality dimensions. Indeed,

upon further investigation, and comparison with other personality research,

we found that the difference in variance is likely caused by the difference in

length in questionnaires, and not by the group under study. In hindsight,

this difference made sense because more questions imply that it is more likely

that the mean score of a participant averages out, that is, that the score is

less extreme. However, we do not expect that this has notably affected the

conclusions. For future directions, more research is needed to investigate
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individual facets. Since this increases the number of comparisons one likes to

make, Bayesian analyses provide an intuitive way to handle this (Gelman et al.,

2012). Also, more research is needed to investigate personality profiles instead

of personality traits. Mixed models such as latent profile analysis provide an

interesting avenue in this regard (Oberski, 2016; Wanders et al., 2016, see also

Table S3 of Huijzer et al., 2022), assuming that model requirements such as

statistical power can be met. Moreover, other factors than personality may

also be important to become a commando (see introduction). Therefore, an

important avenue is to discover not only the psychological but also the phys<

ical predictors of successful graduation in the special forces selection period

(e.g., Saxon et al., 2020).

2.5 Conclusion

In this study, male commandos differ from a group of age<matched civilians

by being less neurotic, less open to new experiences, and more conscientious.

People who started the commando training showed similar differences,

namely, that graduates score lower on neuroticism and higher on conscien<

tiousness than dropouts. Our finding that the directions are the same for

both comparisons adds certainty to the effects that we have found. Given the

relatively small differences between the graduates and dropouts, we would

argue that a personality test would not provide a strong selection instrument

by itself. This is likely due to the fact that the group of people who decide to

join the commandos is quite homogeneous. Hence, for selection purposes,

examining additional psychological and physical measures is an important

avenue. For recruitment purposes though, the use of personality tests can

provide important clues as our study showed relatively strong differences

between commandos and civilians.
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SIRUS.jl: Interpretable Machine Learning via Rule
Extraction

This chapter is based on:

Huijzer, R., Blaauw, F. J., Den Hartigh, R. J. R. (2023). SIRUS.jl: Interpretable Machine Learning

via Rule Extraction. Journal of Open Source Software, 8(90), 5786. https://doi.org/10.21105/joss.

05786

Abstract

SIRUS.jl⁴ is an implementation of the original Stable and Interpretable RUle Sets

(SIRUS) algorithm in the Julia programming language (Bezanson et al., 2017).

The SIRUS algorithm is a fully interpretable version of random forests, that is, it

reduces thousands of trees in the forest to a much lower number of interpretable

rules (e.g., 10 or 20). With our Julia implementation, we aimed to reproduce

the original C++ and R implementation in a high<level language to verify the

algorithm as well as making the code easier to read. We show that the model

performs well on classification tasks while retaining interpretability and stability.

Furthermore, we made the code available under the permissive MIT license. In

turn, this allows others to research the algorithm further or easily port it to

production systems.

⁴Source code available at https://github.com/rikhuijzer/SIRUS.jl.
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3.1 Statement of need

Many of the modern day machine learning models are noninterpretable

models, also known as black box models. Well<known examples of noninter<

pretable models are random forests (Breiman, 2001) and neural networks.

Such models are available in the Julia programming language via, for exam<

ple, LightGBM.jl (Ke et al., 2017), Flux.jl (Innes, 2018), and BetaML.jl

(Lobianco, 2021). Although these models can obtain high predictive perfor<

mance and are commonly used, they can be problematic in high stakes

domains where model decisions have real<world impact on individuals, such

as suggesting treatments or selecting personnel. The reason is that noninter<

pretable models may lead to unsafe, unfair, or unreliable predictions (Barredo

Arrieta et al., 2020; Doshi<Velez & Kim, 2017). Furthermore, interpretable

models may allow researchers to learn more from the model, which in turn

may allow researchers to make better model decisions and achieve a higher

predictive performance.

However, the set of interpretable models is often limited to ordinary and

generalized regression models, decision trees, RuleFit, naive Bayes classifica<

tion, and k<nearest neighbors (Molnar, 2022). For these models, however,

predictive performance can be poor for certain tasks. Linear models, for in<

stance, may perform poorly when features are correlated and can be sensitive

to the choice of hyperparameters. For decision trees, predictive performance

is poor compared to random forests (James et al., 2013). RuleFit is not

available in Julia and is unstable (Bénard et al., 2021a), meaning sensitive

to small changes in data. Naive Bayes, available in Julia as NaiveBayes.jl⁵, is

⁵Source code available at https://github.com/dfdx/NaiveBayes.jl.

36

https://github.com/dfdx/NaiveBayes.jl.


CHAPTER 3

often overlooked and can be a suitable solution, but only if the features are

independent (Ashari et al., 2013).

Researchers have attempted to make the random forest models more inter<

pretable. Model interpretation techniques, such as SHAP (Lundberg & Lee,

2017) or Shapley, available via Shapley.jl⁶, have been used to visualize the fitted

model. However, the disadvantage of these techniques are that they convert

the complex model to a simplified representation. This causes the simplified

representation to be different from the complex model and may therefore

hide biases and issues related to safety and reliability (Barredo Arrieta et al.,

2020).

The SIRUS algorithm solves this by simplifying the complex model and by

then using the simplified model for predictions. This ensures that the same

model is used for interpretation and prediction. However, the original SIRUS

algorithm was implemented in about 10k lines of C++ and 2k lines of R code⁷

which makes it hard to inspect and extend due to the combination of two

languages. Our implementation is written in about 2k lines of pure Julia code.

This allows researchers to more easily verify the algorithm and investigate

further improvements. Furthermore, the original algorithm was covered by

the GPL<3 copyleft license meaning that copies are required to be made freely

available. A more permissive license makes it easier to port the code to other

languages or production systems.

3.2 Interpretability

To show that the algorithm is fully interpretable, we fit an example on

the Haberman’s Survival Dataset (Haberman, 1999). The dataset contains

⁶Source code available at https://gitlab.com/ExpandingMan/Shapley.jl.
⁷Source code available at https://gitlab.com/drti/sirus.
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survival data on patients who had undergone surgery for breast cancer

and contains three features, namely the number of axillary nodes that were

detected, the age of the patient at the time of the operation, and the patient’s

year of operation. For this example, we have set the hyperparameters for the

maximum number of rules to 8 since this is a reasonable trade<off between

predictive performance and interpretability. Generally, a higher maximum

number of rules will yield a higher predictive performance. We have also set

the maximum depth hyperparameter to 2. This hyperparameter means that

the random forests inside the algorithm are not allowed to have a depth higher

than 2. In turn, this means that rules contain at most 2 clauses (if A & B).

When the maximum depth is set to 1, then the rules contain at most 1 clause

(if A). Most rule<based models, including SIRUS, are restricted to depth of 1

or 2 (Bénard et al., 2021a).

The output for the fitted model looks as follows (see Section 3.5 for the code):
StableRules model with 8 rules:
 if X[i, :nodes] < 7.0 then 0.238 else 0.046 +
 if X[i, :nodes] < 2.0 then 0.183 else 0.055 +
 if X[i, :age] ≥ 62.0 & X[i, :year] < 1959.0 then 0.0 else 0.001 +
 if X[i, :year] < 1959.0 & X[i, :nodes] ≥ 2.0 then 0.0 else 0.006 +
 if X[i, :nodes] ≥ 7.0 & X[i, :age] ≥ 62.0 then 0.0 else 0.008 +
 if X[i, :year] < 1959.0 & X[i, :nodes] ≥ 7.0 then 0.0 else 0.003 +
 if X[i, :year] ≥ 1966.0 & X[i, :age] < 42.0 then 0.0 else 0.008 +
 if X[i, :nodes] ≥ 7.0 & X[i, :age] ≥ 42.0 then 0.014 else 0.045
and 2 classes: [0, 1].

This shows that the model contains 8 rules where the first rule, for example,

can be interpreted as:

If the number of detected axillary nodes is lower than 7, then take 0.238,

otherwise take 0.046.

This calculation is done for all 8 rules and the score is summed to get a

prediction. In essence, the first rule says that if there are less than 8 axillary

38



CHAPTER 3

nodes detected, then the patient is more likely to survive (class == 1). Put

differently, the model states that if there are many axillary nodes detected, then

it is, unfortunately, less likely that the patient will survive. This model is fully

interpretable because the model contains a few dozen rules which can all be

interpreted in isolation and together.

3.3 Stability

Another problem that the SIRUS algorithm addresses is that of model stabil<

ity. A stable model is defined as a model which leads to similar conclusions

for small changes to data (Yu, 2020). Unstable models can be difficult to

apply in practice as they might require processes to constantly change. This

also makes such models appear less trustworthy. Put differently, an unstable

model by definition leads to different conclusions for small changes to the

data and, hence, small changes to the data could cause a sudden drop in

predictive performance. One model which suffers from a low stability is a

decision tree, available via DecisionTree.jl (Sadeghi et al., 2022), because it

will first create the root node of the tree, so a small change in the data can

cause the root, and therefore the rest, of the tree to be completely different

(Molnar, 2022). Similarly, linear models can be highly sensitive to correlated

data and, in the case of regularized linear models, the choice of hyperparame<

ters. The aforementioned RuleFit algorithm also suffers from stability issues

due to the unstable combination of tree fitting and rule extraction (Bénard et

al., 2021a). The SIRUS algorithm solves this problem by stabilizing the trees

inside the forest, and the original authors have proven the correctness of this

stabilization mathematically (Bénard et al., 2021a). In the rest of this paper,

we will compare the predictive performance of SIRUS.jl to the performance

of decision trees (Sadeghi et al., 2022), linear models, XGBoost (Chen &
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Guestrin, 2016), and the original (C++/R) SIRUS implementation (Bénard

et al., 2021a). The interpretability and stability are summarized in Table 3.1.

Table 3.1
Summary of Interpretability and Stability for Various Models

Decision Tree Linear Model XGBoost SIRUS

Interpretability High High Medium High

Stability Low Medium High High

3.4 Predictive Performance

The SIRUS model is based on random forests and therefore well suited for

settings where the number of variables is comparatively large to the number of

datapoints (Biau & Scornet, 2016). To make the random forests interpretable,

the large number of trees are converted to a small number of rules. The

conversion works by converting each tree to a set of rules and then pruning

the rules by removing simple duplicates and linearly dependent duplicates,

see the SIRUS.jl documentation or the original paper (Bénard et al., 2021b)

for details. In practice, this trade<off between between model complexity and

interpretability comes at a small performance cost.

To show the performance, we compared SIRUS to a decision tree, linear

model, XGBoost, and the original (C++/R) SIRUS algorithm; similar to

Table 3.1. We have used Julia version 1.9.3 with SIRUS version 1.3.3 (at com<

mit 5c87eda), 10<fold cross<validation, and we will present variability as 1.96

∗ standard error for all evaluations with respectively the following datasets,

outcome variable type, and measures: Haberman’s Survival Dataset (Haber<

man, 1999) binary classification dataset with AUC, Titanic (Eaton & Haas,

1995) binary classification dataset with Area Under the Curve (AUC), Breast
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Cancer Wisconsin (Wolberg et al., 1995) binary classification dataset with

AUC, Pima Indians Diabetes (Smith et al., 1988) binary classification dataset

with AUC, Iris (Fisher, 1936) multiclass classification dataset with accuracy,

and Boston Housing (Harrison & Rubinfeld, 1978) regression dataset with

𝑅2; see Table 3.2. For full details, see test/mlj.jl⁸. The performance scores

were taken from the SIRUS.jl test job that ran following commit 5c873da

using GitHub Actions. The result for the Iris dataset for the original SIRUS

algorithm is missing because the original algorithm has not implemented

multiclass classification.

Table 3.2
Predictive Performance Estimates

Dataset Decision Linear XGBoost XGBoost Original SIRUS.jl

Tree Model SIRUS

max depth: ∞ max depth: 2 max depth: 2 max depth: 2

max rules: 10 max rules: 10

Haberman 0.54 ± 0.06 0.69 ± 0.06 0.65 ± 0.04 0.63 ± 0.04 0.66 ± 0.05 0.67 ± 0.06

Titanic 0.76 ± 0.05 0.84 ± 0.02 0.86 ± 0.03 0.87 ± 0.03 0.81 ± 0.02 0.83 ± 0.02

Cancer 0.92 ± 0.03 0.98 ± 0.01 0.99 ± 0.00 0.99 ± 0.00 0.96 ± 0.02 0.98 ± 0.01

Diabetes 0.67 ± 0.05 0.70 ± 0.06 0.80 ± 0.04 0.82 ± 0.03 0.80 ± 0.02 0.75 ± 0.05

Iris 0.95 ± 0.03 0.97 ± 0.03 0.94 ± 0.04 0.93 ± 0.04 0.77 ± 0.08

Boston 0.74 ± 0.11 0.70 ± 0.05 0.87 ± 0.05 0.86 ± 0.05 0.63 ± 0.07 0.61 ± 0.09

At the time of writing, SIRUS’s predictive performance is comparable to

the linear model and XGBoost on the binary classification datasets, that

is, Haberman, Titanic, Breast Cancer, and Diabetes. The best performance

occurs at the Diabetes dataset where both XGBoost and the SIRUS models

⁸https://github.com/rikhuijzer/SIRUS.jl/blob/5c87eda4d0c50e0b78d12d6bd2c4387
f5a83f518/test/mlj.jl.
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outperform the linear model. The reason for this could be that negative effects

are often nonlinear for fragile systems (Taleb, 2020). For example, it could

be that an increase in oral glucose tolerance increases the chance of diabetes

exponentially. In such cases, the hard cutoff points chosen by tree<based

models, such as XGBoost and SIRUS, may fit the data better.

For the multiclass Iris classification and the Boston Housing regression

datasets, the performance was worse than the other non<SIRUS models. It

could be that this is caused by a bug in the implementation or because this

is a fundamental issue in the algorithm. Further work is needed to find the

root cause or workarounds for these low scores. One possible solution would

be to add SymbolicRegression.jl (Cranmer, 2023) as a secondary back end

for regression tasks. Similar to SIRUS.jl, SymbolicRegression.jl can fit expres<

sions of a pre<defined form to data albeit with more free parameters, which

might fit better but also might cause overfitting, depending on the data. This

achieves performance that is similar to XGBoost (Hanson, 2023).

In conclusion, interpretability and stability are often required in high<

stakes decision making contexts such as personnel or treatment selection.

In such contexts and when the task is classification, SIRUS.jl obtains a

reasonable predictive performance, while retaining model stability and inter<

pretability.

3.5 Code Example

The model can be used via the Machine Learning Julia (MLJ) (Blaom et al.,

2020) interface. The following code, for example, was used to obtain the fitted

model for the Haberman example at the start of this paper, and is also available

in the SIRUS.jl docs⁹.

⁹https://sirus.jl.huijzer.xyz/dev/basic<example/.
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We first load the dependencies:
using CategoricalArrays: categorical
using CSV: CSV
using DataDeps: DataDeps, DataDep, @datadep_str
using DataFrames
using MLJ
using StableRNGs: StableRNG
using SIRUS: StableRulesClassifier

And specify the Haberman dataset via DataDeps.jl, which allows data verifi<

cation via the checksum and enables caching:
function register_haberman()
  name = "Haberman"
  message = "Haberman's Survival Data Set"
  remote_path = "https://github.com/rikhuijzer/haberman-survival-dataset/
      releases/download/v1.0.0/haberman.csv"
  checksum =
      "a7e9aeb249e11ac17c2b8ea4fdafd5c9392219d27cb819ffaeb8a869eb727a0f"
  DataDeps.register(DataDep(name, message, remote_path, checksum))
end

Next, we load the data into a DataFrame:
function load_haberman()::DataFrame
  register_haberman()
  path = joinpath(datadep"Haberman", "haberman.csv")
  df = CSV.read(path, DataFrame)
  df[!, :survival] = categorical(df.survival)
  return df
end

We split the data into features (X) and outcomes (y):
data = load_haberman()
X = select(data, Not(:survival))
y = data.survival

We define the model that we want to use with some reasonable hyperparame<

ters for this small dataset:
model = StableRulesClassifier(; rng=StableRNG(1), q=4, max_depth=2,
max_rules=8)

Finally, we fit the model to the data via MLJ and show the fitted model:
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mach = let
  mach = machine(model, X, y)
  MLJ.fit!(mach)
end

mach.fitresult

Resulting in the fitresult that was presented in Section 3.2.
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Predicting Special Forces Dropout via Explainable
Machine Learning

This chapter is based on:

Huijzer, R., De Jonge, P., Blaauw, F. J., Baatenburg de Jong, M., De Wit, A., & Den Hartigh, R. J. R.

(2024). Predicting Special Forces Dropout via Explainable Machine Learning. European Journal of

Sport Science, 24(11), 1564<1572. https://doi.org/10.1002/ejsc.12162

Abstract

Selecting the right individuals for a sports team, organization, or military unit

has a large influence on the achievements of the organization. However, the

approaches commonly used for selection are either not reporting predictive

performance or not explainable (i.e., black box models). In the present study, we

introduce a novel approach to selection research, using various machine learning

models. We examined 274 special forces recruits, of whom 196 dropped out, who

performed a set of physical and psychological tests. On this data, we compared

four machine learning models on their predictive performance, explainability, and

stability. We found that a stable rule<based (SIRUS) model was most suitable for

classifying dropouts from the special forces selection program. With an averaged

area under the curve score of 0.70, this model had good predictive performance,

while remaining explainable and stable. Furthermore, we found that both physical

and psychological variables were related to dropout. More specifically, a higher

score on the 2800 meters time, connectedness, and skin folds were most strongly

associated with dropping out. We discuss how researchers and practitioners can

benefit from these insights in sport and performance contexts.
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4.1 Introduction

The achievements of sports clubs, organizations, and military units are largely

determined by the performance of the individuals in the organization. As a

consequence, there is an ever increasing pressure to select the right individu<

als, that is, individuals who will perform successfully in the future (e.g., Den

Hartigh et al., 2018). Historically, military selection has been an important

breeding ground for research into selection in psychology and sports. For

example, widely used instruments such as intelligence tests (Terman, 1918),

personality inventories (Ellis & Conrad, 1948), and leadership measures

(Fleishman, 1953) were first established and validated in military contexts. In

the present study, we aimed to advance the field of selection further by apply<

ing machine learning models for the selection of elite soldiers. In doing so, we

set out to investigate the predictive performance, explainability, and stability

of statistical models based on relevant physical and psychological predictors.

Here, predictive performance means the estimated ability of the model to

predict future behaviors, explainability means how easy it is to understand

the model and why certain predictions were made, and stability means the

ability of the model to produce similar conclusions for small changes to the

data (Yu, 2013).

Selection in High-Stakes Military Contexts

Within the military, the special forces are considered elite. Special forces

operators need to be able to perform their tasks under difficult circumstances,

such as continuous threat, extreme temperatures, isolation, and high task

complexity, while being involved in politically sensitive situations (Picano

et al., 2002). Similar to elite sports, this requires extraordinary physical and

mental capabilities (Vaara et al., 2022). Special forces selection courses world<
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wide simulate these circumstances in, what some countries call, hell weeks.

During these selection weeks, recruits typically complete exercises and tasks

for a large part of the day while being sleep deprived. Several studies have

been conducted in the past decades to predict success versus dropout in such

selection programs of the special forces. For example, a study among 800

candidates found that both physical and psychological measures, such as grit

and pull<ups, significantly correlated with graduation (Farina et al., 2019).

The relevance of physical and psychological factors were also found in other

high<stakes military contexts. For instance, studies on 12,924 military pilots,

115 reconnaissance marines, and 57 counter terrorism intervention unit

recruits found that various physical and psychological measures were associ<

ated with graduation (King et al., 2013; Saxon et al., 2020; Tedeholm et al.,

2021). Furthermore, a large<scale study on 1,138 United States (U.S.) special

forces candidates found that psychological hardiness significantly correlated

with graduation (Bartone et al., 2008). Taken together, a multidisciplinary

approach including both physical and psychological measures, is likely to

perform best on the complex task of predicting dropout (Williams & Reilly,

2000).

An important note about previous research is that many studies report

only model explanations, that is, the studies fit a statistical model to the

data and report the fitted parameters. Interestingly, this approach is also

common practice in the field of sport science. However, the outcomes

produced by such models may have little ability to predict future behaviors,

because of overfitting (Hofman et al., 2021; Jauhiainen et al., 2022; Yarkoni

& Westfall, 2017). Also, many studies only report the results from one statis<

tical model, such as a simple regression or the t<test, which largely ignores

the statistical (and computational) progress made since then. Applying more
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recent analytic techniques, such as model evaluation via cross<validation,

could therefore improve research into the selection procedures (e.g., Abt et

al., 2022).

Statistical Models from Machine Learning

Recent analytic advances can be found in the domain of machine learning,

which can generally be described as computer systems that learn and adapt

without following specific instructions. One example is computer vision,

which contains models that can learn from visual data to automatically detect

and classify sport<specific movements. In general, the field invented and re<

discovered a plethora of statistical models, many of which are promising

because the models are distribution<free and are able to find complex relation<

ships in data. The distribution<free property is relevant for selection because

psychometric variables are usually normally distributed while performance

variables in elite performers often are not (e.g., Den Hartigh et al., 2018;

O'Boyle Jr & Aguinis, 2012). Furthermore, finding complex relationships

could provide new insights into the underlying processes when sufficient data

is available. As an example, Jauhiainen et al. (2022) used a complex data set,

containing 3<dimensional motion and physical data, to predict injuries in

791 female elite handball and soccer players. More generally, the commonly

applied random forest algorithms have been very performant in different

settings; especially when the number of variables is large or larger than the

number of observations (Biau & Scornet, 2016).

However, machine learning is no panacea. A disadvantage of many

machine learning applications in sports and the selection of military person<

nel is that the models are too complex to understand. Often, the complex

models are then converted to a simplified form to make them interpretable,
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for example by using SHAP (SHapley Additive exPlanations; for details see

Molnar, 2022). Although the purpose of SHAP is to increase transparency

and explainability of machine learning models, it loses information during

the conversion from the complex model to the simplified representation. In

other words, the simplified representation is not the same as the model that

will be used for decision making. This is problematic for researchers and

practitioners because the simplification could hide issues related to safety,

fairness (e.g., biases), and reliability (Barredo Arrieta et al., 2020; Doshi<Velez

& Kim, 2017). This is especially important in the context of selection, where

wrong decisions can have a lasting impact on the individual.

Apart from predictive performance and explainability, the stability of

models is also an important aspect. A stable model is defined as a model which

leads to similar conclusions for small changes to data (Yu, 2013). An example

of an unstable model could be a model which selects personality and sprint

times to predict dropout in this year’s cohort, but selects other variables for

next year’s cohort. In the context of selection, this variation in the prediction

model is problematic. Unstable models cause various operational problems

such as being deemed less trustworthy and requiring constant changes to the

selection procedure (Yu, 2013).

Current Study

The purpose of the current study was to determine how well we could predict

dropout of special forces recruits while retaining model explainability and

stability. We used a regularized linear model as a baseline. This model is close

to the linear models that are typically used for decision making in sport and

psychology research. Next, we used three machine learning models, namely a

decision tree, a state<of<the<art random forest, and a state<of<the<art explain<
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able rule<based model. We specifically investigated how the four models

compared on their predictive performance, explainability, and stability. We

compared the models on their predictive performance via average area under

the curve (AUC), on their explainability by comparing model interpretation

techniques (e.g., linear model coefficients versus SHAP), and stability by

comparing the differences between the algorithms used.

4.2 Materials and Methods

Participants

We recruited 311 participants aged between 20 and 39 (Mage = 26.5, SDage =

3.8), who were exclusively Dutch males and all part of the selection of the

Special Forces of the Royal Netherlands Army. Active consent was obtained

from all participants and the procedure was approved by the ethical review

board of the faculty (code: PSY<1920<S<0512). Data preprocessing, which in<

cluded the removal of participants for which some data was missing, resulted

in a dataset of 274 participants. Of these participants, 196 dropped out and 78

graduated. More information could not be provided due to security reasons.

Design & Procedure

Participation occurred via a platform specifically built for the research

project (https://yourspecialforces.nl). The data collection was organized by

researchers of the university at the training camp, and was facilitated by the

staff of the Special Forces unit. Physical assessments occurred on the first day

of the first week. Also in the first week of the training, participants completed

the psychological assessments using tablets in a large room which was set

up like a traditional classroom. Once participants entered the room for the

psychological assessment, they were informed about the consent procedure,
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study goal, and that participation would not affect their graduation chances.

For three to four days, the participants spent roughly one hour per day on

filling out the questionnaires, which were all in Dutch.

Measures

The study contained both physical and psychological measures. The physical

fitness of the recruits was measured using a test battery designed to assess

relevant physiological and physical characteristics that are considered to be

important in military training courses (e.g., Haff & Triplett, 2015). All tests

were taken in a predetermined order. First, body composition was determined

by measuring length, weight, and the 4<Site Skinfold (Durnin & Womersley,

1974). Then a standardized warming up was conducted after which the

recruits started in the test<circuit. Lower body power was measured with a

broad jump, the best of three attempts was noted in centimeters. Next, speed

and agility were tested using the Pro Agility test conducted twice with 30

seconds rest in between and both sprint times were summed. The agility test

was followed by maximal grip strength of both hands with one attempt per

hand using a Grip dynamometer. After this test, maximal strength of the

lower body push and pull, and upper body push<kinetic chain was measured

with a 3 repetition max (RM) protocol using the hex<bar deadlift and bench

press exercise. Strength endurance of the upper body pull<chain was measured

with pull<ups: recruits had one minute to complete as many pull<ups as pos<

sible. The penultimate test was designed to determine the anaerobic capacity

of the recruits using a 60 meter sprint. It measured the time it took to sprint

from one place to a place 5 meters away and back (10 meters), then 10 meters

away and back (20 meters), and finally to a place 15 meters away and back (30

meters). Also here, the test was conducted twice with 30 seconds in between.
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After the 60 meter sprint, the recruits had exactly 10 minutes to recover and

prepare for the aerobic endurance test, a timed 2800 meter run. The recruits

were instructed to complete 8 rounds on a 350 meter concrete track as fast as

possible.

Regarding the psychological measures, the first day included the informed

consent and a resilience questionnaire. The resilience questionnaire assessed

the ability to recover or bounce back from stress via the Brief Resilience

Scale (Smith et al., 2008). For example, one of the six items was “I tend to

bounce back quickly after hard times”. Next, goal commitment was measured

via six items such as “I am strongly committed to pursuing my goals” (see

Van Yperen, 2009). The next questionnaire measured self<efficacy (Bandura,

2006) with 14 items such as “How confident are you in your ability to remain

calm in difficult situations?”.

The second day consisted of two cognitive ability tests (Condon & Revelle,

2014). The first test contained 11 matrix reasoning items and the second

test contained 24 three<dimensional rotation items. The participants were

allowed to take 15 and 30 minutes respectively to finish both tests. On the

third day, three questionnaires were answered. The first questionnaire was a

combination of five short questionnaires, namely Mindsets (Dweck, 2000),

Basic Motives (Van Yperen et al., 2014), Motivation Type (Pelletier et al.,

2013), and Approach<Avoidance Temperament (Elliot & Thrash, 2010). The

second measured mental toughness via the MTQ48 (Clough et al., 2002).

This questionnaire contains four key components, namely Control, Com<

mitment, Challenge, and Confidence. The third questionnaire measured

Coping (Lazarus & Folkman, 1984). This questionnaire measured emotion<

focused versus problem<focused coping in response to stressful events. For

example, “I try to forget the whole thing by focusing on other things” which
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is an example of an emotion<focused strategy. After this, the participants

filled in the Dutch version of the NEO<PI<3 personality questionnaire, which

measures the big five dimensions: Neuroticism, Extraversion, Openness,

Agreeableness, and Conscientiousness (McCrae et al., 2005).

4.3 Analyses

In order to find the best performing model, we compared four different

models via MLJ.jl (Blaom et al., 2020). We calculated the models’ scores on

the Area Under the receiver operating characteristics Curve (AUC). The

AUC is a metric that indicates how well a model predicts a binary outcome,

dropout versus graduation in our case. The AUC takes into account that

the threshold of the model can be chosen freely. An AUC score of 1 means

that the model can perfectly predict all outcomes and a score of 0 means that

the model predicts everything wrong. An AUC score of 0.5 means random

guessing and AUC scores of 0.7 to 0.85 and higher are generally considered

to be good to excellent in social sciences (e.g., Menaspa et al., 2010). We com<

pared all models on their predictive performance via 12<fold cross<validation

with AUC as the metric.

The first model was the baseline: a regularized linear model. Here, regular<

ization was necessary because this study gathered relatively many variables

compared to the number of observations. Without regularization, the model

is likely to overfit in such situations. As regularization for the linear model, we

choose Elastic Net which is a combination of Lasso and Ridge regression (e.g.,

Zou & Hastie, 2005) and fitted the model via MLJLinearModels.jl (Blaom

et al., 2020). The strength of both regularizers was chosen automatically via

hyperparameter tuning and 12 fold cross<validation. The second model was a

decision tree, fitted via DecisionTree.jl (Sadeghi et al., 2022), and the third was
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a state<of<the<art boosted random forest called XGBoost (Chen & Guestrin,

2016). The fourth model was a state<of<the<art Stable and Interpretable Rule

Sets (SIRUS) algorithm (Bénard et al., 2021b; Huijzer et al., 2023b). The

SIRUS model is essentially also a random forest algorithm, but with a small

modification such that it is more stable and, therefore, explainable. Note that

contrary to more continuous models such as linear models, the rules fitted by

SIRUS contain hard cutpoints (e.g., if some variable < 20, then A else B).

Of these models, the XGBoost is the least explainable while the other three

models are all explainable. That is, the XGBoost cannot easily be interpreted

due the complexity of the model. For the decision tree model, despite being

explainable, it has the drawback of having a low stability since the split point

at the root of the tree tends to vary wildly (for details about this phenomenon,

see Molnar, 2022). The stability of the logistic regression is moderate since

the model is highly sensitive to the choice of regularization parameters when

using ridge, lasso, or both (Hastie et al., 2009). The stability of the XGBoost

is high due to the large number of trees in the model which averages out

fluctuations. Finally, the stability of SIRUS is generally high too since the

algorithm was designed such that the structure of the random trees is more

stable (Bénard et al., 2021b). For more details about the analyses, see the code

repository at osf.io¹⁰.

4.4 Results

The summary statistics of the variables and correlations for all variables with

graduation are respectively shown in Table A1 and Figure A1 and A2 of

Huijzer et al. (2023). The average AUC score and standard errors are shown

in 4.1. To interpret these ROC curves, note that the diagonal line represents

¹⁰https://osf.io/c8hdy/
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random guessing. Next, to create the lines, a model was fitted on one of the

cross<validation folds for each fold and used to predict data that the model

had not seen during training. Then, note that a classification model can use

different thresholds, the lower the threshold, the more likely an individual is

classified as graduate. Finally, for each fold, the line is drawn by increasing the

model threshold from 0 to 1 and comparing the model predictions to the true

values. The AUC score is the averaged area under these curves.

The XGBoost model had the highest predictive performance, which was

followed by the SIRUS model with a tree depth of 1 and at most 30 rules.

Note that SIRUS with a tree depth of 2 would allow for more complex rules

with two elements in the clause (e.g., if X and Y, then A else B) instead of only

only clause (e.g., if X, then A else B). However, fitting a SIRUS model with a

tree depth of 2 performed consistently worse, which indicated that the model

overfitted the data. The logistic regression and the decision tree had slightly

lower predictive performance.
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Figure 4.1
Receiver Operating Characteristic (ROC) Curves

Note. The thick lines represent estimates of the average ROC curves over all folds. The smaller lines in gray display
the variation on this estimate by showing the the first 8 folds in the 12<fold cross<validation. We show only 8 folds
because more folds made the plot very cluttered. The average Area Under the Curve (AUC) and 1.96 ∗ standard
error scores are shown in the bottom right.

Altogether, while the XGBoost had a good predictive performance, the

SIRUS model combined good predictive performance with strong stability

and explainability (see Analysis section). We therefore decided to analyse the

data further via this model. To do so, we have visualized the stability for dif<

ferent bootstrapped samples in Figure 4.2. Here, by bootstrapped samples, we

mean that we took multiple random samples, via MLJ.jl (Blaom et al., 2020),

of the data and fitted the model on each of these samples. The bootstrapping
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allowed us to visualize the uncertainty in the model which, in turn, aids model

explanations.

To inspect the model, we go through one example feature in Figure 4.2.

The figure shows that the 2800 meters time had the most importance when

summing the feature importances over the various bootstrapped samples.

Next, we know that the rules in the SIRUS algorithm with a depth of 1 by

default always point to “lower then”, for example if 2800 meters time < 650,

then then-score else else-score (Huijzer et al., 2023b). If the then-score is greater

than the else-score, then the model predicts that the individual who satisfies the

rule is more likely to graduate. If the then-score is smaller than else-score, then

the model predicts that the individual who satisfies the rule is more likely to

drop out. The plotted rule directions show the direction of this then-score and

else-score via log( else-scores
then-scores). Thus, from the plotted rule directions, we can

see that the model found that a higher 2800 meters time was associated with

drop out. The exact locations of the split points (e.g., if 2800 meters time <

650) are shown in the right part of the plot and were different in the different

bootstrapped samples. Most of the split points were at 650 seconds, and some

where at 700 seconds. We plotted these split points on top of histograms of

the data to show the distribution of the data.
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Figure 4.2
Rules used by the Rule-Based Classifier in Different Folds

Note. This figure indicates the model uncertainty over different bootstrapped samples. The leftmost column show
the feature importance, the middle column shows the directions of the rules, and the rightmost column shows the
split points of the rules and a histogram of the data. Specifically, the direction shows log( else-scores

then-scores). The sizes of
the dots indicate the weight that the rule has, so a bigger dot means that a rule plays a larger role in the final
outcome. These dots are sized in such a way that a doubling in weight means a doubling in surface size.} Finally,
the variables are ordered by the sum of the weights of the rules and only the first 15 are shown.
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When looking at all the predictions, the running time on the 2800 meters

was the most important with a clear cut<off point for all folds at about 700

seconds. This means that, for all the folds, a higher running time was found

to be associated with dropping out. Furthermore, a higher score on, in partic<

ular, connectedness and skin folds were associated with dropping out.

4.5 Discussion

The purpose of the current study was to determine how well we could

predict dropout of special forces recruits while retaining model explainability

and stability. To do so, we compared a linear, decision tree, XGBoost, and

SIRUS classifier. Of the four models, the XGBoost had the best predictive

performance. This is in line with earlier research that found that XGBoost is

a powerful algorithm in a wide array of tasks ranging from predicting Tweet

engagements (Anelli et al., 2020) to predicting injuries in competitive runners

(Lövdal et al., 2021). However, XGBoost is less explainable than SIRUS. The

difference between the two is that the SIRUS algorithm simplifies the model

and then uses this model for both explanations and predictions. In contrast,

model explainability methods typically use a simplified representation for

explanations and the complex model for predictions. This difference between

explanations and predictions could hide issues related to safety, fairness (e.g.,

biases), and reliability which is especially problematic in the context of

selection, where wrong decisions can have a lasting impact on the individual.

Next, the logistic regression, which is most familiar to sport and performance

scientists, was explainable, but not very stable and performed slightly poorer

than the SIRUS model. The general instability of the logistic model is an issue

that has been described by (Hastie et al., 2009). Furthermore, the decision

tree is explainable but not stable (see Molnar, 2022). Together, the algorithm
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that displayed the best combination on all aspects was the SIRUS algorithm

by achieving a good predictive performance and stability, while remaining

explainable.

The SIRUS algorithm appeared to be able to correctly deselect about 10%

to 20% of dropouts, that is, without sending recruits home who would have

graduated, depending on the fold (see the top right of the SIRUS ROC in

Figure 4.1). There is still a considerable amount of variance in the ROC

curves, but at least 10% would already be a meaningful number in practice.

Moreover, the accuracy of the prediction will most likely improve when

fitting the model on the full dataset instead of cross<validation folds and when

gathering more data over time.

Since the SIRUS model performs relatively well, and is explainable and

stable, we can use our domain knowledge to estimate the generalizability of

the model. With this in mind, the main takeaways from the current model are

that candidates who take more than roughly 700 seconds on the 2800 meters,

score higher on connectedness, and have higher skin folds are more likely to

drop out (see Figure 4.2).

The SIRUS algorithm appeared to be able to correctly deselect about 15%

to 45% of dropouts, that is, without sending recruits home who would have

graduated, depending on the fold (see the top right of the SIRUS ROC in

Figure 4.1). There is still a considerable amount of variance in the ROC

curves, but at least 15% would already be a meaningful number in practice.

Moreover, the accuracy of the prediction will most likely improve when

fitting the model on the full dataset instead of cross<validation folds and when

gathering more data over time. Since the SIRUS model performs relatively

well, and is explainable and stable, we can use our domain knowledge to esti<

mate the generalizability of the model. With this in mind, the main takeaways
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from the current model are that candidates who take more than roughly 700

seconds on the 2800 meters, score higher on connectedness, and have higher

skin folds are more likely to drop out (see Figure 4.2).

Most of these variables are in accordance with earlier studies. For instance,

a lower time for the 3<mile run also predicted graduation in 800 U.S. special

forces recruits (Farina et al., 2019). Furthermore, a lower fat percentage, as

measured by the skin folds, was associated with physical fitness in 140 Finnish

recruits (Mattila et al., 2007). Together, this adds theoretical confidence that

the predictive model will generalize to new cohorts.

Limitations and Future Research

Although the psychological measurements were well<organized and based on

validated questionnaires, a limitation could be that participants faked their

responses (e.g., Galić et al., 2012). To mitigate this in our study, we empha<

sized that data would be processed anonymously and that staff of the Special

Forces unit could not access the data nor use it to make selection decisions,

which has been shown to reduce the faking tendency (Kuncel & Borneman,

2007). Nevertheless, to make the transfer to real selection, the risk of faking

should be accounted for. For future research, it would be interesting to inves<

tigate how selection decisions can be made on the data while new data keeps

being added.

Conclusions and Practical Implications

In our attempt to predict dropout of special forces recruits by fitting

machine learning models, SIRUS had a higher predictive performance than

the linear classifier and decision tree, while being more explainable than

the state<of<the<art XGBoost classifier. In other words, SIRUS achieves a

balance between predictive performance, explainability, and stability. This
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together with its ease<of<use make it particularly suitable for many research

problems in science, including selection in sports, and organizational and

military contexts. This better understanding of the model may outperform

the accuracy of black<box models in the long run, because it allows researchers

to improve the model with their domain expertise and improve their domain

expertise with the model. In turn, practitioners may use this to make data<

driven selection decisions. To conclude, we would encourage scientists to use

SIRUS, or similar stable rule<based models. This is especially useful when

working in fields, such as sports and military selection, where the number of

variables often approaches the number of observations and where predictive

performance, explainability, and stability are critical.
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Early Identification of Dropouts During the Special
Forces Selection Program

This chapter is based on:

Huijzer, R., Blaauw, F. J., De Wit, A., De Jonge, P., & Den Hartigh, R. J. R. (2024). Early

Identification of Dropouts During the Special Forces Selection Program. PsyArXiv. https://doi.org/

10.31234/osf.io/nbs6j

Abstract

Special forces selection is a highly demanding process that involves exposure to

high levels of psychological and physical stress resulting in dropout rates of up to

80%. To identify who likely drops out, we assessed a group of 249 recruits, every

week of the program, on their experienced psychological and physical stress, recov<

ery, self<efficacy, and motivation. Using both ordinary least squares regression and

state<of<the<art machine learning models, we aimed to find the model that could

predict dropout best. Furthermore, we inspected the best model to identify the

most important predictors of dropout and to evaluate the predictive performance

in practice. Via cross<validation, we found that linear regression performed best

while remaining interpretable, with an Area Under the Curve (AUC) of 0.69. We

also found that low levels of self<efficacy and motivation were significantly associ<

ated with dropout. Additionally, we found that dropout could often be predicted

multiple weeks in advance and that the AUC score may underestimate the real<

world predictive performance. Taken together, these findings offer novel insights

in the use of prediction models on repeated measurements of psychological and

physical processes, specifically in the context of special forces selection. This

offers opportunities for early intervention and support, which could ultimately

improve selection success rates.
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5.1 Introduction

Special forces are often considered the most elite military units, with the

potential to significantly impact strategic military outcomes. They are typi<

cally composed of highly trained and motivated individuals who are able

to operate in high<stakes environments which are both psychologically and

physically demanding. However, dropout rates during the selection process

are close to 80% (e.g., Gayton & Kehoe, 2015). This is a concern for both

the recruits and the military as it incurs a personal toll on the recruits and is

costly for the military. Scientifically, a major challenge is identifying potential

dropouts early in the selection period via accurate predictive models. Such

models could allow for early intervention on potential future dropouts by

intervening the relevant psychological and physical processes.

The relatively scarce previous research investigated dropout by comparing

test scores from before the selection period with the final dropout or

graduation decision. Psychological tests included, for instance, personality

questionnaires and showed that a higher emotional stability and conscien<

tiousness were associated with graduation (e.g., Jackson et al., 2012; Sørlie et

al., Huijzer et al.; 2020, 2022; Rolland et al., 1998; Tedeholm et al., 2021).

In other research, psychological hardiness was associated with graduation

among 1,138 special forces recruits (Bartone et al., 2008) and 178 Norwegian

border patrol soldiers (Johnsen et al., 2013). On the other hand, in a study

including 73 South African special forces, hardiness and self<efficacy were not

associated with graduation (De Beer & Van Heerden, 2014). In another study,

higher self<efficacy was significantly associated with graduation among 380

special forces recruits (Gruber et al., 2009).

Physical tests typically include fitness, strength, and endurance tests. For

example, in a study among 69 Finnish soldiers, baseline information of aero<
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bic fitness significantly predicted graduation (Vaara et al., 2020). In a study

on 160 Swedish police counterterrorism intervention units including various

psychological and physical tests, the authors found that only running capacity

was a significant predictor of graduation (Tedeholm et al., 2023) A study on

800 special forces recruits showed that both psychological and physical tests

were significantly associated with graduation (Farina et al., 2019). Finally, a

follow<up study on 117 special forces soldiers found that physical character<

istics of the body, such as a lower percentage body fat and fat mass were

predictors for physical performance and graduation (Farina et al., 2022).

Despite some evidence for the role of psychological and physical factors

in predicting dropout, a main issue of previous studies is that they showed

limited effects and different predictor combinations. For instance, when

comparing agreeableness between military recruits and a civilian control

group, agreeableness was found to be lower after training (Jackson et al.,

2012), whereas this was not found in two recent studies (Huijzer et al., 2022a;

Tedeholm et al., 2023). Such contradicting results could be due to theoretical

and methodological factors. Theoretically, a commando profile could be

composed of different combinations of characteristics that could allow an

individual to perform in highly psychologically and physically demanding

situations (e.g., Den Hartigh et al., 2016). Accordingly, and methodology<

related, an important factor contributing to dropout is how recruits respond

to the stress during the heavy selection program. This cannot be derived from

psychological and physical measures taken at one point during the selection

program. Thus, an important question is: how do recruits actually respond

to, and recover from, the stress to which they are exposed? Such a question

can be answered by measuring recruits during the selection period on relevant

psychological and physical processes of stress and recovery.

65



PREDICTING DROPOUT IN SPECIAL FORCES SELECTION

Recent research provided initial evidence that repeated measures can be

used to predict dropout. For instance, one longitudinal study on elite soldiers

found that recruits who voluntarily dropped out exhibited an increase in

emotional or physical pain and a decrease in self<efficacy up to three days

before dropping out (Saxon et al., 2020). Similarly, in a study on 46 male

and female recruits in the Australian Army basic military training course,

higher stress and recovery, as measured via the Short Recovery and Stress Scale

(Kellmann & Kölling, 2019), were associated with a higher risk of delayed

completion (Tait et al., 2022). Similar results have been found in sports. For

example, in a study on 135 adolescent elite athletes, lower recovery and higher

stress states as measured by the Acute Recovery and Stress Scale (ARSS)

were followed by depressive, burnout, and insomnia symptoms (Gerber et

al., 2022). In a study on 74 middle and long<distance runners, recovery and

exertion were considered some of the most important variables for predicting

injuries (Lövdal et al., 2021, Figure 4). These findings are promising as they

suggest that dropout, either voluntary or involuntary (e.g., due to injury), can

be predicted in advance based on measures taken during selection or training

periods.

Building upon first efforts of predicting dropout from military programs

and the increasing interest in the psychological and physical stress monitoring

during army training, important statistical strides can be made. Most notably,

while previous studies often applied traditional statistical methods, i.e., how

variables were associated with dropout or graduation, they often did not

report the predictive performance. This means that associations between

variables could be too small to be useful in practice or they could be wrong

due to overfitting (Yarkoni & Westfall, 2017). Ideally, a study would report

predictive performance for multiple models to avoid overfitting and depen<
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dence on one model, and use repeated measures to allow for prediction of

dropout in advance. For a recent example in the context of the marine corps,

see Dijksma et al. (2022).

The current study aimed to assess the experienced psychological and

physical stress and recovery of recruits during the selection weeks while

improving upon the statistical methods used in previous research. In line with

recommendations from previous literature, we specifically focused on the

experiences of self<efficacy, motivation, and psychological and physical stress

and recovery (Den Hartigh et al., 2022d). We compared various classical and

state<of<the<art machine learning models via cross<validation. In addition, we

explored the moment at which valid predictions of dropout could be made

(e.g., one day, one week, or three weeks in advance). Such knowledge could

lead to a better understanding of the dropout process, and to targeted inter<

ventions in practice.

5.2 Method

Participants

The sample for this study consisted of 249 male special forces recruits, ranging

in age from 18 to 35 years. Prior to their involvement in the study, active

informed consent was obtained from each recruit. The information letter

informed participants about the study’s purpose, procedures, and potential

risks, as well as their right to withdraw from the study at any time. The partic<

ipants were diverse in terms of their military experience, with some being new

recruits while others had prior experience in different branches of the armed

forces. Due to the sensitive nature of the data, more detailed information

about the participants could not be made available.
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Measures

During the selection period that lasted up to 16 weeks, we asked the following

self<efficacy and motivation questions, both in Dutch: “How confident are

you that you can complete the course?” (0 = not confident at all, 100 = very

confident) and “How motivated are you to pass the training program?” (0 =

not at all motivated, 100 = very motivated). Furthermore, we used a Dutch

version of the Short Recovery and Stress Scale (SRSS), a self<report question<

naire assessing perceived stress and recovery levels (Kellmann & Kölling,

2019). The Dutch version underwent a parallel back<translation procedure

(Vallerand, 1989). It was subsequently validated in a group of 385 Dutch and

Flemish athletes (Brauers et al., 2024). The SRSS consists of 8 items divided

into two subscales: Recovery and Stress. Items were rated on a seven<point

Likert scale, with higher scores indicating greater levels of recovery or stress.

The Recovery subscale evaluates an individual’s current state in comparison

to their best recovery state ever, with items such as “Physical performance

capacity” and “Mental performance capacity”. The Stress subscale assesses an

individual’s current state relative to their highest stress state ever, including

items like “Muscle stress” and “Lack of inspiration”, see Kellmann & Kölling

(2019) for more information. Over the course of the study, the recruits com<

pleted the questionnaire weekly, resulting in a total of 1652 responses. On

average, we received about 6 responses per person. The number of responses

per participant varied due to individuals dropping out of the selection process

before the end of the study. The data was collected using an electronic ques<

tionnaire, which was administered via a web<based platform that we built for

this project. The collection occurred at the start of the training week, which

was typically on Monday morning at 0800 hours.
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Analysis

We processed the data to include the following 13 columns: id, week, motiva-

tion, self-efficacy, 8 SRSS items, and whether the individual drops out in the

week after the response. Here, we truncated the data at 13 weeks, given that

the data was only collected for 14 out of 16 weeks.

Next, we analyzed the model in three ways. We consider none of these ways

as definitive, but instead consider each of these ways as a tool to evaluate the

model (e.g., McShane et al., Hofman et al.; 2019, 2021). Firstly, we applied

principles and techniques from machine learning to estimate the model’s

ability to predict future behaviors. We used 12<fold cross<validation and the

area under the receiver operating characteristic curve (AUC) as a performance

metric, both via the MLJ.jl software package (Blaom et al., 2020). The AUC

is a measure of the performance of a binary classifier, where a value of 0.5

indicates random guessing and a value of 1.0 indicates perfect predictions.

We used the AUC because it is a robust metric that is not sensitive to class

imbalance and is a common metric in the literature. Furthermore, we used

multiple different models to determine which one performed best in terms of

predictive performance. We fitted a binary logistic model with no intercept as

our baseline model. Next, we fitted two SIRUS models to the training data

as the SIRUS model has shown to perform well in similar situations with

relatively few samples and binary outcomes (Bénard et al., 2021a; Huijzer

et al., 2023b). SIRUS is based on random forests, and, therefore, non<para<

metric meaning that it does not make assumptions about the distributions

of the data. Random forest<based models are robust to outliers, do not

require scaling of the data, and perform very well generally (Biau & Scornet,

2016). Finally, we fitted a modern gradient boosting model called EvoTrees.jl

(Desgagne<Bouchard et al., 2024). Gradient boosting models are not fully
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interpretable due to the large amounts of trees (e.g., Huijzer et al., 2023), but

they are known to perform well in many situations (e.g., Chen & Guestrin,

2016; Ke et al., 2017). In the context of military selection, we prefer models

with an optimal trade<off between predictive accuracy and interpretability.

Therefore, to combine predictive performance and interpretation (Hofman

et al., 2021), we inspected the model that scored best on this trade<off. Specif<

ically, we fitted the model on the full dataset and inspected the fitted model.

Thirdly, we evaluated the predictive performance in practice. To do so,

we converted the predictions of the model in the range of 0 to 1 back to a

binary outcome. We did this by choosing a threshold and using this threshold

to split the outcomes in dropout and graduate groups. Next, we visualized

the predictions of the model for different thresholds. This helps researchers

and practitioners in selecting the right balance between the number of false

positives and false negatives, and provides an indication of the predictive

performance in practice.
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5.3 Results

The results for the evaluation runs on the cross<validation data are shown in

Figure 5.1.

Figure 5.1
Receiver Operating Characteristic (ROC) Curves

Note. The different lines show the results for all folds in the 12<fold cross<validation. The average Area Under the
Curve (AUC) and 1.96 ∗ standard error scores are shown in the bottom right of each graph.

In these results, the bottom two graphs both have a max tree depth of 2. This

higher depth allows these models to capture more complex interactions be<

tween variables. However, the results show that these models do not perform

markedly better than the simpler models, see 5.1. This is likely caused by more
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complex models overfitting the data and could likely be solved by using more

data. In general, the logistic regression model performs best since it scores

best in the trade<off between predictive performance and interpretability. The

interpetability is very high because the algorithm is very simple compared to

the thousands of trees in gradient boosting models, and the performance is

very comparable to the gradient boosting model. Therefore, we inspect the

logistic regression model in more detail below.

The coefficients of the logistic model, when fitted on the full dataset, are

shown in 5.1. When interpreting this model, note that there is variation in

performance for the different cross<validation folds, see Figure 5.1. This is why

we decided post hoc to set our alpha level conservatively to 0.001 instead of

the commonly used 0.05. This lower alpha level means that we are less likely to

find significant results. Setting this level post hoc seemed reasonable as we use

the p<value as just one of the many tools to interpret the model (e.g., McShane

et al., 2019. From Table 5.1, we can see that the variables “Self<Efficacy” and

“Motivation” were significant. The positive coefficients indicate that recruits

who score higher of self<efficacy and higher on motivation are less likely to

drop out.

72



CHAPTER 5

Table 5.1
Fitted Binary Logistic Regression Statistics

Variable Coefficient Z-Score p-Value Lower 95% Upper 95%

Self<Efficacy 1.734 4.78 <0.001 1.022 2.446

Motivation 1.205 3.6 <0.001 0.549 1.86

Muscle Tension 0.561 2.18 0.029 0.056 1.066

Overall Stress −0.701 −1.95 0.051 −1.405 0.003

Lack of Enthusiasm 0.531 1.38 0.168 −0.221 1.282

Negative Emotional State −0.493 −1.38 0.168 −1.194 0.209

Emotional Balance 0.406 1.24 0.215 −0.233 1.044

Overall Recovery 0.341 0.89 0.373 −0.413 1.096

Physical Performance −0.343 −0.83 0.407 −1.157 0.47

Mental Performance −0.245 −0.6 0.549 −1.049 0.56

Recovery 0.225 0.55 0.582 −0.574 1.025

Next, the predictions made by the logistic regression model are visualized

in Figure 5.2. The figure shows that many of the dropouts were predicted

correctly in the last week, which is in line with the AUC score as reported

in Figure 5.1. Furthermore, some dropouts were predicted weeks before the

actual dropout event. This suggests that the reported AUC score underesti<

mates the actual predictive performance, since our data is modeled such that

a dropout prediction is only considered correct if it is made in the week before

the dropout event.
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Figure 5.2
True Dropout Data and Predictions of the Model

Note. This figure shows the true points of drop out for each participant in the leftmost subfigure. The second
subfigure shows how the data was modeled. The aim was to train a model that could predict dropout events. The
other three subfigures show the predictions according to the model for different thresholds. Different thresholds
allow practitioners to select the right balance between the number of false positives and false negatives. This,
together with the AUC, provides an indication of the predictive performance in practice.

5.4 Discussion

The current study aimed to predict dropout during the special forces

selection period. To that end, we assessed the recruits on psychological and

physical factors related to stress and recovery during this period. We applied

simple logistic models as well as more complex models on this data. Next,

we used various tools to analyze the model. Specifically, we evaluated how
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well each model performs, we interpreted the best model, and evaluated the

predictive performance in practice. We found that a simple logistic regression

model scored best on the trade<off between predictive performance and inter<

pretability because it was interpretable and performed relatively well with an

area under the curve (AUC) of 0.69. The most complex models scored only

slightly better on the AUC, which suggested we had insufficient data for more

complex models.

The logistic regression model’s revealed that self<efficacy and motivation

were significantly related to dropout. This provides support for earlier

research that found that decreases in self<efficacy were related to dropout in

a military context (Saxon et al., 2020). More generally, it is in accordance

with the perspective that temporal measures of self<efficacy and motivation

can provide important information on an individual’s resilience. That is,

motivation and self<efficacy are important psychological performance factors

that ideally return to normal levels following psychological and physical

stress. When individuals loose resilience, as reflected in their self<efficacy and

motivation levels, then this could be a warning signal for negative outcomes

such as psychological problems or dropout (for a review, see Den Hartigh et

al., 2022). Interesting in this regard is that more direct measures of stress and

recovery experiences were less predictive of dropout. One reason for this could

be that the individual questions are more sensitive than items containing mul<

tiple questions. Put differently, in items with multiple questions, variations

tend to average out, making it less likely that the items become significantly

related to dropout. Another reason for this could be that the SRSS has, so far,

only been validated in the sports context. Despite the parallels between the

sport and military context, individuals are typically exposed to more extreme

psychological and physical stress during the selection program. It could be
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that the experience of stress and recovery are so high for everyone, that it

cannot account for the variance in the outcome anymore.

Finally, we estimated the predictive performance in practice. We visualized

the predictions of the model for different thresholds. This showed that the

model could sometimes predict dropout multiple weeks in advance with

few false positives, depending on the chosen threshold. In practice, this

means that the calculated AUC scores may underestimate the predictive

performance due to the way the data was modeled. Note that choosing the

right threshold is important as it determines the balance between the number

of false positives and false negatives. We showed multiple thresholds which

could be used by practitioners to select the right balance. Since the cost of

missing a dropout is high, we recommend a higher threshold, which would

result in more early warnings of dropout.

Future work could improve upon the current study in several ways. First,

the sample size was relatively small for machine learning models. With a

higher sample size, the variation in the cross<validation folds would most

likely decrease. Second, the frequency of measurements could be increased.

More frequent measurements could provide more opportunities for early

intervention and support. Third, this study could be complemented with

quantitative measures to gain deeper insights into the personal experiences,

coping strategies, and psychological states of recruits. This could help refine

the predictive models and identify potential areas for intervention. Finally,

intervention studies could be conducted based on the predictive models to

design and test interventions aimed at reducing dropout rates. These could

include psychological resilience training, targeted physical conditioning pro<

grams, or personalized support strategies.
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Taken together, our study builds on previous research that has highlighted

the importance of psychological and physical factors in predicting dropout

in special forces selection. The longitudinal design of our study adds to this

body of knowledge by demonstrating that dropout may be predicted during

the selection program, offering more opportunities for early intervention and

support. Even more so, by picking the right threshold, individuals at risk of

dropout could sometimes be identified weeks in advance. This allows for tar<

geted interventions and support, which could subsequently improve success

rates and reduce the personal and human resource costs associated with high

dropout rates.
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6 General Discussion

We investigated whether it is possible to predict who will drop out from

special forces selection. To do so, we gathered data to compare special forces

operators with the general population, and special forces dropouts with grad<

uates on personality traits, see Chapter 2. We found that successful recruits

and operators are typically less neurotic and more conscientious when com<

pared to respectively the general population and dropouts. These results were

in line with previous research in high<stakes contexts (Braun et al., 1994;

Campbell et al., 2010; Lee et al., 2011; McDonald et al., 1990). However,

although we found effects in the expected directions for the dropout versus

graduate comparison, they were not significant and had small to medium

effect sizes.

These small effect sizes made it difficult to predict who will drop out on

personality only. As other researchers put it: The traditional focus on expla<

nations has led to intricate theories that have little (or unknown) ability to

predict future behaviors (Yarkoni & Westfall, 2017). This could be like a car

being judged on speed alone. For a while this could lead to better cars, but

at some point, manufacturers will ignore other important factors such as

comfort. With this in mind, we continued this thesis by being more focused

on predictive performance. Note that solely aiming at good predictions (or

comfort) does not solve all problems either. Too much focus on prediction

could lead to intricate models that may lead to unsafe, unfair, or unreliable

predictions (Barredo Arrieta et al., 2020; Doshi<Velez & Kim, 2017). For

example, to explain how a model can be unfair or unreliable, suppose we

only focus on predictive performance and the model decides to filter out all

individuals born in October. The model does this because it has seen that
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individuals born in October are more likely to drop out. This, so called

overfitting, would likely lead to unfair and unreliable predictions. To mitigate

this, we can focus on both prediction and explanation (Hofman et al., 2021)

since overfitting is less likely to happen if we understand why a model makes

certain predictions.

With our renewed focus on predictive performance, we found that not

all prediction models were suitable for our research, because models had

either a lower stability, interpretability, or predictive performance. In an

attempt to improve this, we implemented our own version of the Stable

and Interpretable RUle Sets (SIRUS) algorithm, and evaluated its predictive

performance on multiple dataset, see Chapter 3. In the end, SIRUS scored

similar in predictive performance to linear regression, see Table 3.2. This was

surprising as the linear regression and SIRUS models fit the data very differ<

ently. In theory, the SIRUS model should have a strong benefit for fragile

systems such as personnel selection. In such systems, negative effects are often

nonlinear (Hill et al., 2024; Taleb, 2020). For example, falling from a height

of 10 meters is more than 10 times as harmful as falling from a height of 1

meter. Similarly, a recruit that takes 10 seconds longer than average on a 2800

meters run could be much more likely to dropout than a recruit that takes just

1 second longer. In theory, the SIRUS model could capture these nonlinear

effects better than linear regression. This is because the SIRUS model is based

on random forests, which functions by finding splitpoints in the data, which

do not have to be linear. However, we did not find evidence for this when

testing the model on the fragile system<based datasets such as the Haberman,

breast cancer, and diabetes datasets, see Table 3.2. There could be many

reasons for this.
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One could be that our implementation of the SIRUS model was not optimal.

Another could be that the datasets were not large enough to detect the more

complex patterns.

Next, we tested different models, including the SIRUS model, on a large

special forces dataset in Chapter 4. This dataset consisted of physical measures

(e.g., number of push<ups and 2800 meters running time) and psychological

measures (e.g., the NEO<PI<3 personality questionnaire) and was gathered in

the first week of the selection period. When aiming to predict who would

drop out, we combined the predictions with model explanations. For the

predictions, we found that XGBoost performed best in terms of predictive

performance. However, the model is too complex to interpret directly. There<

fore, interpretations methods, such as SHAP (Lundberg & Lee, 2017), are

needed which require a simplified representation of the model. This simplifi<

cation could hide biases or reliability issues. With the other models, we found

that SIRUS performed slightly better than the linear model on our dataset.

We also found that the SIRUS model was able to predict dropouts with a

good accuracy, while retaining stability and interpretability.

Based on the ROC curves, Figure 4.1, we suspect that the SIRUS model

can likely filter out about 10% of dropouts without losing graduates. In gen<

eral, we expect that models are better at predicting dropouts than graduates

(Hunt et al., 2011; Taleb, 2013). This could be because many things have to

go right for a recruit to graduate, while only one thing has to go wrong for

an individual to drop out. There are an infinite number of ways in which the

recruit could be hindered from graduating, also known as black swan events

(Taleb, 2010). For example, breaking a leg or suddenly deciding to quit could

lead to immediate, and permanent, dropout. Maybe the model can predict

this by finding a clue in the data, such as a poor running time or a low
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motivation. Conversely, since the data that the model sees is limited, it is much

harder to predict that everything will go right.

While the results of Chapter 4 are promising, they do not provide informa<

tion on how recruits respond to the high levels of physical and psychological

stress during the selection period. Having this information could help to

predict dropout more accurately. Therefore, in Chapter 5 we used a shorter

questionnaire that was filled in each week instead of a longer questionnaire

that was only filled in the first week. We found that a higher self<efficacy and

motivation were significantly related to dropout. This means that how partic<

ipants responded at the start of the week was related to whether they would

soon drop out. With these and other variables, the model achieved an average

AUC of 0.69, which means it could be useful in practice. After estimating the

predictive performance in practice, we found that the linear regression model

could sometimes predict dropout multiple weeks in advance with few false

positives.

In conclusion, to answer the question whether we can predict who will

drop out from special forces selection: From Chapter 4 and 5, it looks like we

can predict dropout reasonably well. The average AUC of about 0.7 generally

means a reasonable predictive performance (e.g., Hosmer et al., 2013, p. 177).

When following recruits over time, we can sometimes predict dropout mul<

tiple weeks in advance and use that to conduct interventions. These results

are promising. Next, it is important to confirm these results in practice since

that is the only way to know with certainty how well the model works.

6.1 Future Research

Future research could investigate whether improvements can be made in

the predictive performance of psychological questionnaires. In our research,
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traditional psychological measures performed poorer than physical measures

or individual questions. More specifically, the NEO<PI<3 personality test is

widely used and regarded as a good measure with high validity and reliability,

but it predicted poorer than physical tests, such as 2800 meters time, in Chap<

ter 4 and Tedeholm et al. (2023). This is in contrast to the experiences of both

Dutch special forces operators and U.S. Navy SEALs, who reported that psy<

chology played a more important role than physical fitness in their selection.

They witnessed many individuals with excellent physical fitness drop out, and

many individuals with poor physical fitness make it through. This could mean

that there is still room for improvement in the predictive performance of

psychological questionnaires. Similarly, in Chapter 5, the Short Recovery and

Stress Scale (SRSS) appeared to perform poorer than the two, newly added,

self<efficacy and motivation questions. This could be because the self<efficacy

and motivation questions were individual questions while the SRSS consisted

of multiple questions for each item. Individual questions could provide a

stronger signal because more questions per item makes it more likely that the

signal is averaged out. Put differently, the chance that a participant answers

“extremely likely” on one question is higher than the chance that a participant

answers “extremely likely” on multiple questions. It could also be that partic<

ipants are less willing to participate in questions which appear to be similar.

Especially in a longitudinal study, participants might lose interest when they

need to answer multiple similar questions repeatedly. This could imply that

a high questionnaire validity and reliability does not imply a high predictive

performance, at least in the context of special forces selection. This was also

found in another longitudinal study by Song et al. (2023). In this study, the

authors found that single items obtained significant predictive validity, and

would sometimes show a larger effect size than using multiple items. Also,
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they found that multiple items would only perform moderately better than

single items.

Future research could investigate whether it is possible to use individual

questions instead of a subscale¹¹. From an explanation perspective this

suggestion might seem counter<intuitive because it would hinder reliability

evaluations, but from a prediction perspective it could be useful by increasing

sensitivity. In Chapter 5, the self<efficacy and motivation questions were

individual questions which predicted dropout well. Fitting models on such

individual questions could help to detect those questions that are most

predictive in the specific context in which it is used. Put differently, instead

of relying on a set of pre<determined questions, future work could use a data<

driven approach to find the most suitable questions for each study. Note

that this does require sufficient data, as the number of participants should

typically be above 10 times as high as the number of questions to prevent

overfitting (e.g., Peduzzi et al., 1996).

Relatedly, future research could investigate whether more specific ques<

tions or questionnaires could improve predictive performance for special

contexts. Instead of taking a questionnaire that is widely considered valid and

reliable (e.g., the NEO<PI<3) researchers could aim to find those questions or

questionnaires that predict well in their specific context, such as special forces

selection. For example, the single self<efficacy and motivation questions that

we used in Chapter 5 predicted dropout well. With this, researchers could

continuously monitor the predictive performance of questions or question<

naires and drop those that do not predict well while occasionally adding new

questions or questionnaires and evaluating those. This pipeline of adding

a new question or questionnaire, evaluating its performance, and adjusting

¹¹A subscale here means a group of questions that are combined into one score.
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would not be new. It is already commonly applied in, for example, social

media, search engine, or self<driving car companies. These companies contin<

uously adjust their models because the real world is continuously changing

too. They do this by continuously updating their models, then testing them

internally, then testing them with a small group of testers, and then finally

sending them to all users. Psychology researchers could, for example, do the

same by continuously updating their models, then testing them internally by

interpreting the models and evaluating the predictive performance, and then

sending them to the real world.

Furthermore, in this thesis, we have applied linear models and decision tree<

based models. These models could be a problem for fragile systems, such as

personnel selection, where negative effects are nonlinear (Taleb, 2020). For

example, as pointed out earlier, falling from a height of 10 meters is more than

10 times as harmful as falling from a height of 1 meter. As another example,

it looks like scoring lower on an intelligence test was exponentially related

to mortality (O'Toole, 1990, Table 2). Another example could be visible in

the raincloud plots in Figure 2 of Pattyn et al. (2024). In this figure on

Belgian special forces, there are clear cutoff points visible in the data. Future

research could investigate whether the use of models which could fit these

patterns better could improve predictive performance. A perfect model for

such a system could be one which combines the best of linear and tree<based

models. It would cut the data into different parts, and then use a linear model

(or exponential) for each part. Models like this exist (e.g., Raymaekers et al.,

2023), but might need additional constraints to improve performance on

small datasets.

Finally, this thesis mentioned the story of the blind men and an elepant.

The blind men individually come to different (and incorrect) conclusions
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about what an elephant is. When they together look at the elephant from

different angles, they come to a much better conclusion. This thesis has

looked into widely varying methods to predict dropout from special forces

selection. We used frequentist statistics, Bayesian statistics, machine learning,

single<question questionnaire items, and more. Hopefully, combining these

different perspectives resulted in a more complete picture, which will allow

future researchers to see the full elephant.
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7 Nederlanse samenvatting (Dutch Summary)

Stelt u zich eens voor dat u vooraf kunt zeggen welke individuen een piloteno<

pleiding, een Harvard voorselectie, of zelfs in NASA’s astronauten selectie

kunnen halen. Dit zou veel teleurstelling bij individuen kunnen voorkomen

en het zou organisaties veel tijd en geld kunnen besparen. Helaas zijn dit soort

voorspellingen bijzonder moeilijk te maken. Een recruit kan bijvoorbeeld de

beste in zijn opleiding zijn, maar toch uitvallen door problemen thuis of een

misstap in een konijnenhol.

Samen met het Korps Commandotroepen hebben wij onderzocht of wij

kunnen voorspellen wie gaat uitvallen van de opleiding. Om dit te doen

hebben wij data van 275 recruten verzameld in de vorm van sportdata (zoals

2800 meter hardlooptijd) en psychologische data (zoals persoonlijkheidsvra<

genlijsten). In hoofdstuk 2 hebben wij deze persoonlijkheids data uit de eerste

week van de opleiding gebruikt. Op basis van deze data hebben wij onder<

zocht of wij persoonlijkheidskenmerken konden gebruiken om onderscheid

te maken tussen mensen die zijn uitgevallen en mensen die zijn geslaagd. Ook

hebben wij onze data vergeleken met data van Nederlandse burgers uit een

ander onderzoek. We vonden dat commando’s typisch minder neurotisch,

meer consciëntieus en minder open voor ervaringen waren dan de burgers.

Voor de geslaagden vonden wij dat ze typisch minder neurotisch en meer

consciëntieus leken te zijn. Voor selectie leken de persoonlijkheidskenmerken

niet voldoende voorspellend te zijn.

Vanaf Hoofdstuk 3 hebben wij ons meer gericht op het voorspellen van

uitval. In onze data analyses vonden wij dat veel statistische modellen niet

goed presteerden op het gebied van voorspellend vermogen, stabiliteit of

uitlegbaarheid. Daarom hebben wij een statistisch model wat bekend staat
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als Stable and Interpretable RUle Sets (SIRUS) opnieuw geïmplementeerd

in de programmeertaal Julia. Het doel van deze open<source implementatie

was om het model beter te begrijpen en om het model beter toe te kunnen

passen op onze data. Tevens zorgde deze vertaling ervoor dat het aantal regels

code gereduceerd kon worden. Dit verhoogde de leesbaarheid voor onzelf

en staat hopelijk in de toekomst andere onderzoekers toe om het algorithme

te verbeteren of als de basis voor nieuwe algorithmes. Wij hebben het voor<

spellend vermogen van het model vergeleken met andere modellen en de

originele implementatie. Hieruit bleek dat het voorspellend vermogen van

onze implementatie vergelijkbaar was met de originele implementatie in de R

programmeertaal.

In hoofdstuk 4 hebben wij deze nieuwe implementatie en enkele andere

modellen weer toegepast op de data uit de eerste week van de opleiding. Dit

keer hebben wij niet alleen naar persoonlijkheid gekeken, maar ook naar de

sportdata. Op deze data hebben wij vervolgens vier verschillende modellen

vergeleken op voorspellingsvermogen, stabiliteit en uitlegbaarheid. We von<

den dat het SIRUS model het meest geschikt was voor het voorspellen van

uitval. Ook vonden wij dat fysieke en psychologische data beide gerelateerd

waren aan uitval. Meer specifiek, een langzamere score op de 2800 meter hard<

looptijd, verbondenheid, en een huidplooimeting waren sterk gerelateerd aan

uitval.

In hoofdstuk 5 hebben wij onderzocht of wij de voorspellingen konden

verbeteren door de data gedurende de hele opleiding te verzamelen. Deze

vragenlijsten waren korter, maar werden iedere week afgenomen in plaats van

alleen in de eerste week. Wij hebben opnieuw meerdere machine learning

modellen op de data getest. In dit geval was een lineaire regressie model

het meest geschikt voor het voorspellen van uitval. Met dit model vonden
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wij dat lagere scores op zelfeffectiviteit en motivatie geassocieerd waren met

uitval. We vonden ook dat het model in veel gevallen uitval al enkele weken

van tevoren kon voorspellen. Dit biedt mogelijkheden voor het vroegtijdig

ingrijpen om uitval te voorkomen.

In conclusie, om de vraag te beantwoorden of wij kunnen voorspellen van

de special forces opleiding: Uit hoofdstuk 4 en 5 lijkt het erop dat wij uitval

redelijk goed kunnen voorspellen. Het volgende doel is om deze resultaten in

de praktijk te testen, omdat dat de enige manier is om met zekerheid te weten

hoe goed deze technieken werken.
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